En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de mercurio por lo que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: El 100% es decir 7 unidades son del tipo brazo asimétrico abierto. Todas se encuentran en buen estado.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-016-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Centro de mando	undefined	
Municipio	MUNICIPIO DE VELEZ-MALAGA	
-75-42		

Circuito	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P.circuito(W)
CIR-01	CALLE HORNO ARABE	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	6	750
CIR-01	CALLE POLIDEPORTIVO	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	-1-	125

Fuente: elaboración propia

C) CENTRO DE MANDO CMA-016-B

El centro de mando, se encuentra situado en el patio del Colegio Público "El Romedal".

A nivel general, el cuadro se encuentra en buenas condiciones, contando el mismo con las protecciones pertinentes, tanto magnetotérmicas como diferenciales. El cableado, se encuentra también buenas condiciones

Centro de Mando y Protección CM-016-B

En cuanto a:

- **Balastos de doble nivel:** El cuadro dispone de 14 lámparas con balastos electromagnéticos.
- **Balastos electrónicos**: no se encuentran balastos de este tipo en este cuadro.
- **Reducción en cabecera**: No dispone de ningún elemento de reducción.
- **Telegestión**: No hay sistemas de este tipo instalados. Todos los circuitos deben disponer de protecciones diferenciales instaladas y es obligatorio según el REBT.

Ficha inventario Centro de Mando y Protección CMA-016-B

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

 Nombre
 CMA-016-B

 Município
 MUNICIPIO DE VELEZ-MÁLAGA

 Via
 CMNO SIN NOMBRE UNO

 Localización
 EMBUTIDO EN PARED JUNTO AL PATIO

MÓDULO DE MEDIDA

N° de contador energía activa 75525469 N° suministro 2403178100

PROTECCIÓN GENERAL

PROTECCIÓN DE MANIOBRA

Polos/Int. 1PX5A 0 3PX32A

	Marca	
1 =	ABB	33
	4-4-	
	APER	11

Marca

SIEMENS

ELEMENTOS DE MANIOBRA

Tipo reloj Analógico
Célula fot. No
Interruptor manual No
Tipo sistema de ahorro No tiene
Hora inicio reduc. -:-

Marca Marca Marca Marca Hora fin reduc.

	ORBIS	
	¥-1	
. 1	112	
	*	

ESTADO DEL CUADRO

Armario BIEN BIEN

Cableado Elem.protección

BIEN	
MAL	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR-01	Alumb.Publ.	3PX16A	- 4	0	- 3	Cobre	E.B.Tubo	2.5	34.1

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	4.5	6.3	8.8
Reducido	4.5	6.3	8.8

TENSIONES DE FASE

200	LUBLI	
VRS	VST	VTR
394.7	393.3	391.3

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- **Lámparas**: el 17,64 % son de Vapor de mercurio por lo que no son adecuadas desde el punto de vista de la eficiencia energética, mientras que el 82,35 % son de vapor de sodio de alta presión.
- **Luminarias**: El 17,64 % son luminarias del tipo brazo asimétrica abierto y el 82,35 % son del tipo columna asimétrica cerrada.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-016-B

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO Contro de mando Rivarigin Mina SPIC DE VELEZ-VALAGA CENCIAS VIS. LARGERE VARIANTES DE VELEZ-VALAGA CENCIAS VIS. LARGERE VARIANTES DE VELEZ-VALAGA CENCIAS VARIANTES DE VELEZ-VALAGA VARIANTES DE VELEZ-VALAGA VARIANTES DE VELEZ-VALAGA CENCIAS VARIANTES DE VELEZ-VALAGA VALAGA DE VELEZ-VALAGA VALAG

Fuente: elaboración propia

4.16.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-016)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 13,15 kW,
 - que la potencia demandada por las 24 lámparas más los equipos auxiliares es de 5,46 kW.
 - ⇒ que la medida en el centro de mando A es de 1,36 Kw y B es de 3,55 kW, sin contarla
 dependencia municipal que se incluye en el CMA-016-B.
 - que no tienen maxímetro ,
 - que no dispone de discriminación horaria,
 - que la tarifa actual es 2.0A,
 - el factor de potencia es 0,80.
 - ⇒ Estimar lo que están pagando de penalizaciones por el maxímetro 5.267,80 €
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Como recomendación principal, se propone la separación del suministro actual en dos, uno para el alumbrado público y otro para la propia dependencia municipal, siguiendo de esta manera el criterio de los Planes de Optimización Energética en cuanto a separación de suministros acorde a la funcionalidad de cada uno; en el caso en cuestión de alumbrado público, cuando esto suceda se tendrá que contratar la tarifa T.U.R. no obstante si la situación actual persiste, al tener contratado más de 10 kW, se tendría que negociar un contrato con una comercializadora de libre mercado.
 - → Potencia óptima a contratar: Se recomienda contratar 5,19 kW que es la potencia que realmente demanda la instalación de alumbrado público si se separan los consumos de los de dependencias. La potencia a contratar para la dependencia tendrá que ser suficiente para abastecer la demanda en el periodo de máxima uso.
 - Discriminación horaria: Se aconseja contratar la tarifa actual con D.H.
 - Factor de potencia: El factor de potencia es muy pequeño por lo que es recomendable colocar una pequeña batería de condensadores que 2,5 kVAr con un precio de 173,25 €
 - ⇒ **Ejecución de proyectos:** para este cuadro, el de alumbrado, no es necesario legalizar. No obstante para el nuevo suministro de la dependencia habría que realizar un nuevo proyecto.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-016-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{42,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 7 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 7 balastos electrónicos punto a punto, con reducción de flujo marcada a la 1:00 A.M.
- Sustitución /Adecuación de luminarias
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 4 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 4.009 kWh al año
- Una reducción de emisiones de CO2 de 4,66 toneladas al año
- Un ahorro económico de 631,01 euros al año.

Y sería necesaria una inversión⁴³ de 793,94 euros amortizable en 1,25 años

⁴³ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

⁴² Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Simulación de medias de ahorro energético y económico según SICAP

Optimización Energética de Cuadros de Alumbrado Público SICAP.V3.2 Fecha de simulación: 15 / 2 / 2010

DATOS GENERALES

Municipio	MVELEZMALA
Nombre	CMA-016-A
Contador	75525469
Consumo (MVh)	6.074
Coste Actual (6)	1,029,60
Coste Opt (GEFAEM)(€)	1.029,60

Tipo	Potencia (W)	Cantidad
VAPOR MERCURIO	125	7
Total polencia instalada (W)	57	5

MEDIDAS REALIZADAS

Tensiones de entrada (V)

Vis	392,40
Visit	398,70
Vit	395.90

Régimen de funcionamiento

Sistema ancendido	Celula
Herario de reducción	**
Marra anuelas da id	Hillian al San Vis.

Régimen pomina)	4.310
Regimen reducido	0

Intensidades nominales (A)

in .	3,20
	3,20
	1.10

Predio eléctrico de referencia (¢/kWh)

	GEFAEM	Utilizado
Situación actual	0.1671	6,16711
Situación optimiz	0.0	0.1671*

Intensidades reducidas (A)

-	3.20
T.	3,20
16	3,20
T-	1.10

Coseno phi

Casena phi 1	6.0
Coseno phi 2	0.8
Coseno ohi 3	0.8

^{*} Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Tipo actual	Fol Actual (My	Tipo proquesto	Pot prop. (W)
VAPOR MERCURIO	125	VM VSAP	70
Tipo actue/	Pot Actual (W)	Tipo propuesto	Pot prop (W)
VAPOR MERCURIO	125	VM -> HM	70

incorporación RED-EST

Simulación	Flot (kVA
RED-EST	7,50
VSAP+RED-EST	7,50

-
:00:
1

Régimen nominal 1737

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	BON	RED-EST	VSAP+RED-EST	VSAFHEDN	VSAF+BE	HM+BE
Consumo(kWh)	3.314	3,314	4.877	4,946	2.579	2.537	2.064	2.235
Ahorro (kWh)	2.759	2.759	1,196	1.128	3.494	3.537	4.009	3.838
Coste (€)	607,49	745,32	829,68	841,09	484,83	477,58	398,59	565,04
Ahorro (€)	422,10	284,28	199,92	188,50	544,97	552,03	631,01	464,58
Inversión (€)	405,44	582,69	254,44	4.500,00	4.905,44	565,03	798,94	1,526,69
P.Retomo (Años)	0,96	1,87	1,87	23,87	9,00	1,02	1,25	3,28

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	HM	RDM	RED-EST	VSAP+RED-EST	VSAP+BON	YSAPABE	HM+BE
Consumo(kWh)	3.314	3,314	4,877	4,946	2,579	2.537	2,064	2.235
Ahorro (kWh)	2.759	2.759	1.196	1.128	3,494	3.537	4.006	3.838
Coste (€)	607,49	745,32	829,68	841,09	484,63	477,56	398,59	565,04
Ahorro (€)	422,10	284,28	199,92	188,50	544,97	652,03	631,01	464,56
Inversión (C)	405,44	532,69	254,44	4.500,00	4.905,44	565,03	793,91	1.526,89
P.Retorno (Años)	0,96	1,87	1,27	23,87	9,00	1,02	1,25	3,28

C) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-016-B

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{44,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

La inversión mostrada a continuación no se corresponde con la reflejada por la herramienta SICAP, ya que en existen equipos eficientes instalados en el cuadro. Dicho esto, se proponen las siguientes mejoras.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 3 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 3 balastos electrónicos punto a punto, con reducción de flujo marcada a la 1:00 A.M
- Instalación de 14 balastos electrónicos de 250 W para lámparas de vapor de sodio de alta presión.
- Instalación de un reloj astronómico en el cuadro para el control del encendido y el apagado de las lámparas.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia total recomendada: 7 KW

⁴⁴ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 6.503 kWh al año
- Una reducción de emisiones de CO2 de 7,56 toneladas al año
- Un ahorro económico de 1.069,51 euros al año.

Y sería necesaria una inversión⁴⁵ de 1.880,26 euros amortizable en 1,75 años

⁴⁵ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipia	MVELEZMALA
Nombre	CMA-016-8
Contador	75525485
Consumo (kWh)	16,811
Coste Actual (6)	2.858,86
Coste Opt. (GEFAEM)(€)	2.858,86

Tipo	Potencia (W)	Cantidad	
VAPOR MERCURIO	125	3	
VAPOR SODIO ALTA PRESION	200	14	
Total potencia instalada (W)	3875		

MEDIDAS REALIZADAS

Tensiones da entrada (V)

Vie	394,70	٦
Vot	393,30	
Vit	391,30	

Régimen de funcionemiento

Sisiema entendido	Reicj awiogion
Inexa de extucación	175
Horas anuales de	utilización (h)

Régimen romitial	4,450
Régimen redupdo	D

Intens dades naminales (A)

Triena datas naminanes (A)		
lt:	4,50	
.0	6,30	
0	9,90	

Precio aléctrico de referencia (£/KWh)

	GEFAEM	Utilizaco
Situationacted	0.1671	0.16711
Similation optimiza	0.0	0.1671*

intensidades reducidas (A)

1800	4,50
lo el	6,30
11	8,90

Comenn phi

Cosent phi.1	0,8
Cosano pini 2	0.79
Coseno phi 3	0.91

^{*}Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Tipo actual	Pot.Actual (W)	Про рторыева	Pet prop. (VV)
VAPOR MERCURIO	125	VM -> VSAP	70
VAPOR SODIO ALTA PRESION	250	VSAP> VSAP	250
Tipo actual	Pol.Actual (W)	Про репривесо	Pot prep. (VV)
VAPOR MERCURIO	20	VM> FIM	70
VAPOR SODIO ALTA PRESION	250	VSAF> HM	250

Incorporación RED-EST

Serulation	PotitkVA
RED-EST	7,50
VSAP+RED-EST	7,50

Régimen de funcionamiento propuesto

Sistema ercentido	
Hora do reducción	01:00

Horas anuales de utilización propuestas

Régimen nominal	1882
Regimen reducido	2588

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HO	BON	RED-EST	VSAP+RED-EST	VSAP+BDN	VEAP+BE	HIGHER
Consumo(kWh)	15.616	15.516	12,608	13.715	12.237	11.983	9.807	10.611
Ahorro (kWh)	694	694	3.702	2.596	4.073	4.327	6,503	5.599
Coste (€)	2.760,07	3.081,88	2.240,15	2,425,06	2195,42	2.162,01	1,789,35	2,245,55
Ahorro (€)	90,79	-229,01	610,71	433,00	663,44	706.86	1.069,51	613,31
Inversión (C)	173,76	1.432,29	1.072,25	4.500,00	4.673,76	1,205,36	1.889,26	3.888,29
P.Retorno (Años)	1,75		-8,42	10,37	7,04	1,70	1,75	6.33

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAF	HEA	BDN	RED-EST	VSAP+RED-EST	VSAP+BON	VSAP+BE	HMHBE
Consumo(kWh)	15.616	15.516	12.608	13.715	12.237	11.983	9.867	10.611
Ahorro (kWh)	684	694	3.702	2,596	4.073	4.327	6.803	5.599
Coste (€)	2.760,07	3.081,88	2.240,15	2,425,06	2196,42	2.153,01	1.789,35	2.245,55
Ahorro (€)	98,79	-223,01	618,71	433,80	663,44	706,86	1.069,51	613,31
Inversión (€)	173,76	1.432,28	1.072,26	4.800,00	4.673,76	1.206,36	1,860,26	3,888,29
P.Retorno (Años)	1,75		1,73	10,37	7,04	1,70	1,75	6,33

4.16.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (Nº 2403178100) se presentan en la siguiente tabla según las mejoras propuestas, los ahorro conseguidos y las inversiones a realizar para cada centro de mando y para la dependencias en conjunto, del mismo modo esta tabla se refleja en el apartado destinado a las dependencia municipal.

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- **Situación futura** que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro № 2403178100

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	46.874,00	7.834,49	-	-	-	-	-
Estado futuro	35.394,00	5.972,32	28.200,20	11.480,00	13,35	1.862,17	15,14

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 11.480 kWh al año
- Una reducción de emisiones de CO2 de 13,35 toneladas al año
- Un ahorro económico de 1.862,17 euros al año.

Y sería necesaria una inversión⁴⁶ de 28.200,20 euros amortizable en 15,14 años.

⁴⁶ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.17 SUMINISTRO Nº 2598264900

4.17.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-017

Este Módulo de Medida, se encuentra en la pared del centro de transformación nº 3491, ubicado en la urbanización El Romeral. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 10943370, proporciona energía eléctrica a 41 luminarias distribuidas en 2 circuitos, que pertenece al CMA-017-A.

Actualmente los modos de facturación y tarifas contratadas son modo 1 con tarifa 2.0.2 (actual 2.0.A), el contador no dispone de maxímetro, pero sí tiene instalado reloj de DH, debiendo cambiarse en breve por un contador digital, ya que el contador que presenta es de tipo analógico y no responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 21.536 kWh/año, y un coste estimado de 3.560,02 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,32 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-017

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-017-A

El centro de mando, se encuentra situado en un armario de pared situado en la fachada del centro de transformación nº 3491; proporciona energía eléctrica a 41 luminarias distribuidas en 2 circuitos. Existen en el cuadro dos circuitos más completamente instalados pero de los cuales no cuelga ninguna lámpara.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, tierra, cableado y los elementos de protección. Dispone de un interruptor general y para el encendido de las luminarias tiene instalado un reloj astronómico. Tiene también instalado un reductor de flujo en cabecera.

En cuanto a:

- Balastos de doble nivel: No existen este tipo de equipos en las lámparas del cuadro.
- **Balastos electrónicos**: no dispone de equipos de este tipo instalados
- Reducción punto a punto: Tiene instalado un reductor de flujo en cabecera de la marca Salicru.
- **Telegestión**: no dispone de sistemas de este tipo instalados
- Adaptaciones a normativa vigente: se cambiará el contador por uno digital.

Ficha inventario Centro de Mando y Protección CMA-017-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-017-A	
MUNICIPIO DE VELEZ-MÁLAGA	
CMNO ALGARROBO (DE) (PROL)	
 ATORNILLADO EN PARED DEL CT 3491	

MÓDULO DE MEDIDA

Nº de contador energía activa

10943370	
10010010	

Nº suministro

2598264900

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
1	1			
18)]			
-0-0	I			

	Polos/Int.	
	4PX50A	
Ε	0	
Ε	Ü	-

Marca	
TERASAKI	
- 40	- 44

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad				
	1			
	1			
	1			

Polos/Int.	
2PX10A	
2X25A300	
3PX100A	

	Marca	
	TERASAKI	
Ì	TERASAKI	
	OTRO	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Astronómico	Ŧ
No	
Si	
Reduc, Flujo Cabecera	
01:00	

	Marca
	Marca
	Marca
	Marca
Но	ra fin reduc.

ORBIS	
*	
OTRO	
SALICRU	
07:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

1	BIEN	4
	BIEN	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb.Publ.	4PX25A	T	4X25A300	T	Cobre	E.B.Tubo	10	- 8
CIR-02	Alumb.Publ.	4PX25A	T	4X25A300	T	Cobre	E.B.Tubo	10	
CIR-03	Alumb, Publ.	4PX25A	Ī	4X25A300	T		10-	-	- P
CIR-04	Alumb Publ.	4PX25A	T	4X25A300				*	

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	10.1	10.8	8.9
Reducido	6.56	7.02	5.78

TENSIONES DE FASE

LIVOIOI	ALO DE L	NOL.
VRS	VST	VTR
401.4	400.6	398.6

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo columna farol.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son de tipo columna farol el 71% y báculo asimétrico cerrado el resto.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-017-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO Contro de mendo SAN 279.A Mandepile MANDERO DE VIDEZ MANDA

Circusto	Wir	Lawses	Retrecta(W)	Soperti	Liminate	Equality	Enthito	Unidades	P.circulto.W
0.64	CALLE BARGUEROS	VAPOR SODIO ALTA PROSIGIS	153	SCLUMBA	FAROL	Dichanas	a to	2	360
G R-#1	CALLE HEIA (LA)	VAPOR SOMO ALTA FRESION	153	COLUMNA	TAMOL	Dectromag.	0 DK	12	1.000
CRA	COLF+M*+J4j	VAPOR ADDED STEA PREMIU	163	7011 00.4	FERRI	Hertrenny	RPN	n	441
CHAT	CALLEROPHIA (P.)	VAPTIC NO NO SLEEP HIGH DM	163	221,000.0	F000.	Hechaning	H.Hb	78	1,861
0190	CALLE LE SCIENA GAICA	YAFOR SOME ALTA FREEDOM	153	SCITHERY	FREDL	Hectoria	0.00	4	161
C P-42	DALLE HIRA (LA)	VAPOR SOME ALTA PROSEN	157	COLUMBA	FVROL	Dechomag.	0.0%	2	100
C.8.42	CMMO A GAMADISC (DR) PRO11	VAPOR 50000 ALTA PRESIDE	187	BACHEO	ASSET MEA TERRADA	Sectioner.	0.58		787

Fuente: elaboración propia

4.17.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-017)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 2,63 kW,
 - 🗢 que la potencia demandada por las 41 lámparas más los equipos auxiliares es de 7,07 kW,
 - que la medida en el centro de mando es de 6,06 kW,
 - que no tienen maxímetro ,
 - que la discriminación horaria es con D.H.,
 - que la tarifa actual es 2.0.2
 - el factor de potencia es 0.9
 - Se estima que las penalizaciones cuando instalen el maxímetro serán de 329,03 €/año.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: se recomienda seguir con la tarifa actual e ir legalizando el suministro; es decir; como el que contador del que dispone actualmente es analógico la empresa distribuidora de energía procederá a su cambio y en ese momento se aconseja efectuar el aumento de potencia.
 - Potencia óptima a contratar: se recomienda contratar 7 kW, aunque es conveniente realizar un seguimiento de la facturación cuando se instale el nuevo contador y de esta forma teniendo en cuenta las lecturas del maximetro se podrá realizar un ajuste de potencia.
 - Discriminación horaria: teniendo en cuenta que se trata de un alumbrado público y que la tarifa que tiene contratada lo permite se aconseja seguir con la discriminación horaria actual, es decir, con D.H.
 - ➡ Factor de potencia: en cuanto al factor de potencia, los valores tomados en el inventario están bien ajustados pero con intención de mantener este estado optimo y teniendo en cuenta que todas las lámparas del cuadro son de vapor de sodio (eficientes energéticamente hablando) se aconseja la instalación de balastos electrónicos que ayudan a corregir el coseno de phi.
 - Redacción de proyecto: para contratar la potencia recomendada y al superar la misma un 50 % de la actualmente contratada se tendrá que realizar un proyecto de instalación con un coste aproximado de 1.500 € y una inversión estimada para la realización del mismo de 41.000 €. En el Anexo II Justificación de Inversiones se detallan las inversiones a realizar para este tipo de proyectos, no obstante son totalmente estimativas ya que dependen del estado particular de cada instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-017-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando no se hace necesaria ninguna actuación en el mismo. Dispone por un lado de un reductor de flujo en cabecera y lámparas de vapor de sodio, considerándose ambos equipos eficientes.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipia	MVELEZMALA
Nambre	CMA-017-A
Confedor	10943370
Carsums (kWh)	21.536
Coste Actual (C)	3,580,02
Costs Opt (GEFAEMIE)	3 580,62

Tipo	Potencia (W)	Cantidad	
VAPOR SODIO ALTA PRESION	200	41	
Total potencia instalada (W)	3.150		

MEDIDAS REALIZADAS

Tensiones de entrada (V)

915	4) 1/4 (
165	40,31
1017	395,41

Régimen de funciona miento

Sharray memorately	7e ijadionin to
Hozero da recipción	C .CC
Horas anuales de	utilización (hi
OTHER DESIGNATION OF THE PARTY	+1400

The state of the s		
Fradmen homes	1.00	
Régional raducation	2 160	

Intersidades cominales (A)

TERROR STATE	naco resummen hay
11	1,73
N. J	1.54
TV.	363

Precia eléctrice de referencia (CJtWh)

	SERVEN!	This of 2
Solieum solie	C. 76	D 8-
attento openia.	CC	3.5-

Intensidades reducição (A)		
10	9,3	
N	7.0	
11	5,4	

Cosano	phi
DRINGERIT	0.92
20000 Til.	0.91
Cosero p #G	0.9

[&]quot; Los precies temados para el cálculo han side introducides per el usuario.

SIMULACIONES REALIZADAS

Suscitución de lamparas

Thirthday	Political Mon-	Принциралейн (Forgrey (VC)
VAPOR SODIO ALTA PRESION	250	対象ペールの活動	13
Tropystillen	Parterna 1993	T TRANSPORTED TO	Emples (AX)
VAPOR SODID ALTA PRESIDN	36	With an EV	11

Incorporación RED-EST

Onto produce and	19 To be set 1
SHIPE	90
Vov.2+-ED EGI	7,5.
Régimen de funcionamie	nta propuesto
SCHOOL BROWN BY	
Tipte our resilier on	31.00
Horas anuales de utilizad	lón pr o puestas
Regime portrol	1/37
FArmen (soleniti)	74-6

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	HIM	REDIEST	ASAPHREDIEST	WSAPERON .	VRAPARE	HAME
Consuma(kWh)	21.535	21.636	20.747	20.819	20.819	20.747	16:663	18,046
Ahorro (kWh)	0	0	789	717	717	789	4.873	3,490
Coste (C)	3.580,02	4,445,35	3,441.60	3,450,39	3,450,38	3.441.60	2,827,02	3,914.41
Ahome (£)	0,00	-885.92	118,41	108,83	109,63	1/8,41	793 nn	-354 38
inversión (C)	0.00	3,694.51	2,402,59	4,600.00	4,500.08	2,402,69	3.650,00	9,598 51
P Retomo (Años)			4.17	41,04	41.64	23.28	5.03	760

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VEAP	HM	HON	REDIET	VSAFARED EST	VSNP+BDN	VSAP4BE	HMHBE
Consumo(kWh)	21.536	21.635	20,747	20.819	20.819	20.747	16.663	18,046
Ahorro (kWh)	0	۰	789	717	717	789	4.973	3,460
Caste (€)	3.580,02	4.445,35	3,441,60	3,450,39	3,450,38	3.441.60	2.827,02	3,914.41
Aherre (6)	0,00	886 32	118,41	108,63	109.63	118.41	733,00	264,28
inversión (C)	0,00	3,694,51	2.402.59	4.500,00	4,500,00	2.402.59	3,680,00	9,598.51
P.Retomo (Años)			20,28	44.04	41,64	25,28	5,03	

WEAP. Bush until de lamates Valance Sadri Alta Phashn
I. V. Sush until de lamates de operares métales de forte pert.
H. V. Sush until de lamates de operares de forte pert.
H. V. Sush until de la seria de la companyante de forte pert.
H. H. H. P. I. De nora no de la color perte perte de merchane.
H. H. H. P. I. De nora no de la color perte de la color perte de la merchane de la color perte de la color pert

4.17.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 2598264900) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro № 2598264900

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	21.536,00	3.560,02	-	-	-	-	-
Estado futuro	21.536,00	3.560,02	-	-	-	-	-

Fuente: Elaboración propia.

Se estima que:

- No se alcanzan ahorros energéticos
- No se disminuyen las emisiones de CO2
- Un ahorro económico y la inversión es cero.

No sería necesaria ninguna inversión.

4.18 SUMINISTRO Nº 3438983700

4.18.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-018

Este Módulo de Medida, se encuentra en la C/ Artesanos, en un cuarto interior en la estación de autobuses; dentro del núcleo urbano de Vélez Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87733853, proporciona energía eléctrica a 117 luminarias distribuidas en 4 circuitos, que pertenece al CMA-018-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con la tarifa 2.0.2 (actual 2.0.A) el contador dispone de maxímetro y reloj de DH.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **121.111** kWh/año, y un coste estimado de **19.232,33** €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 1,80 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-018

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-018-A

El centro de mando, se encuentra situado en la pared exterior de la estación de autobuses de la localidad, ubicada en la C/ Artesanos, proporciona energía eléctrica a 117 luminarias distribuidas en 4 circuitos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. La toma de tierra se encuentra en mal estado y dispone además de cuatro magnetotérmicos que protegen los hilos del doble nivel. Además de esto dispone de interruptor general con su protección diferencial y de protecciones magnetotérmicos para la maniobra. Para el encendido de las lámparas utiliza un reloj analógico y tiene instalada correctamente la reducción punto a punto en algunas lámparas del cuadro con los balastos de doble nivel.

Centro de Mando y Protección CMA-018-A

En cuanto a:

- Balastos de doble nivel: Algunas lámparas del cuadro disponen de equipos de este tipo instalados y en funcionamiento.
- **Balastos electrónicos**: el cuadro no dispone de equipos de este tipo instalados.
- Reducción punto a punto: existe la reducción punto a punto en la mayoría de las lámparas del cuadro.
- Telegestión: no dispone de telegestión.
- Adaptaciones a normativa vigente: el cuadro debe disponer de un diferencial para la protección contra las sobretensiones de red. Todos los circuitos deben disponer de protecciones diferenciales instaladas.

Ficha inventario Centro de Mando y Protección CMA-018-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

.CMA-018-A	-
MUNICIPIO DE VELEZ-MÁLAGA	
CALLE ARTESANOS	
ARED EXTERIOR ESTACIÓN DE AUTOBUSES	

MÓDULO DE MEDIDA

Nº de contador energía activa

87733853

Nº suministro

3438983700

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
	1			
	*	4		
	35	= +1		

Polos/Int.	
4PX63A	
ū	- (
h	-

Marca	
HAGER	
ь	
OTRO	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad			
1	- 14		
- *			
2	7 11		

	Polos/Int.	
-	1PX6A	
	0	
	3PX160A	

Marca	
UNELEC	4.
ABB	- 1

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Analógico	1
Si	1
Si	1
Reduc. Flujo p. a p.	1
01:00	

	Marca
	Marca
	Marca
	Marca
Hoi	ra fin reduc.

ORBIS	
ORBIS	-
OTRO	
÷	-
08:00	-4

ESTADO DEL CUADRO

Armario Tierra

BIEN	
MAL	

Cableado Elem.protección

BIEN	-
MAL	

Observaciones

HAY 4 MAGNETOTERMICOS DE 1x10A QUE PROTEGEN LOS HILOS DE MANDO DEL DOBLE NIVEL Y 1 MAGNETOTERMICO DE 1x10A. PARA PUENTEAR EL DIFERENCIAL EN CASO DE AVERIA

CIRCUITOS DE SALIDA

Circuita	Tipo	P Magn.	Marca	P.Dif	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb Publ.	3PX25A	GE	0	8	Cobre	E.B.Tubo	6	
CIR-02	Alumb.Publ	3PX25A	GE	.0	~	Cobre	E.B.Tubo	6	-
CIR-03	Alumb Publ	3PX25A	ĞE	0		Cobre	E.B.Tube	10	
CIR-04	Alumb Publ	3PX25A	GE	.0		Cobre	E.B.Tuba	10	1 4 1

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	39	43.4	45.9
Reducido	35.7	40.6	42.1

TENSIONES DE FASE

	1000	7.00
VRS	VST	VTR
409.9	414.1	414.2

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 10 % son de Vapor de Mercurio y el 90 % son de Vapor de Sodio de Alta Presión por lo que existe un grupo que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 42 % son del tipo báculo asimétrico cerrado, el 38 % son del tipo columna farol, el 10% son del tipo brazo asimétrico cerrado y por último el 10% son del tipo brazo asimétrico abierto.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna asimétrico cerradas el 60 % y el resto son del tipo columna farol.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna farol el 29 %, columna simétrico cerrado el 16 %, brazo asimétrico cerrado el 41 % y el resto son del tipo brazo farol.

Tipo de soporte	Brazo	Tipo de soporte	Columna
Tipo de luminaria	Asimétrico cerrado	Tipo de luminaria	Farol

	Tipo de soporte	Columna	Tipo de soporte	Brazo
	Tipo de luminaria	Asimétrico cerrado	Tipo de luminaria	Farol

Fuente: Elaboración propia

Circuito 4

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna farol el 68 %, columna simétrico cerrado el 17 %, y el resto son del tipo báculo asimétrico cerrado

Tipo de soporte	Báculo	Tipo de soporte	Columna
Tipo de luminaria	Asimétrico cerrado	Tipo de luminaria	Farol

Tipo de soporte	Columna
Tipo de luminaria	Asimétrico cerrado

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-018-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Centro de mando	intellined	
Municipio	MUNICIPIO DE VELEZ-MÁLAGA	

Circuite	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P.circuito(W)
CIR-01	CALLE AZALEA	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	9	1.350
CIR-01	CALLE AZALEA	VAPOR SODIO ALTA PRESION	150	BACULO	A SIMETRICA CERRADA	E.D.Nivel	BIEN	2	300
CIR41	CALLE AZALEA	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	Electromag.	BIEN	19	2.860
CIR41	GALLE AMAPOLA	VAPOR SODIO ALTA PRESION	150	BRAZO	A SIMETRICA CERRADA	E.D.Nivel	BIEN	3	450
CIR-01	CALLE ARTESANOS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	5	750
CIR-01	CALLE TULIPANES	VAPOR SODIO ALTA PRESION	150	BRAZO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	2	300
CIR41	CALLE ALBARDONEROS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	2	300
CIR-01	CALLE CLAVEL (UNO)	VAPOR SODIO ALTA PRESION	150	BACULO	A SIMETRICA CERRADA	E,D,Nivel	BIEN	8	1,200
CIR-01	CALLE ARROYO ROMERO	VAPOR MERCURIO	126	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	- 6	625
CIR-02	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	400	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	2	800
CIR-02	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	Electromag.	BIEN	3	450
CIR-02	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	150	COLUMNA	A SIMETRICA CERRADA	E.D.Nivel	BIEN	2	300
CIR-02	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	2	500
CIR-03	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	400	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	-34	1,600
CIR-03	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Electromag.	BIEN	3	450
CIR-03	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	Electromag.	BIEN	4	600
CIR-03	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	250	COLUMNA	FAROL	E.D.Nivel	BIEN	9	2.260
CIR-03	CALLE ALBARDONEROS	VAPOR SODIO ALTA PRESION	150	BRAZO	A SIMETRICA CERRADA	E.D.Nivel	BIEN		760
CIR-03	TRVA BARRERO DE CAPUCHINOS	VAPOR SODIO ALTA PRESION	150	BRAZO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	- 5	750
CIR-04	PLAZA SAN ROQUE	VAPOR SODIO ALTA PRESION	250	COLUMNA	FAROL	E.D.Nivel	BIEN	6	1.500
CIR-04	CALLE MAGALLANES	FLUORESCENTE COMPACTA	38	COLUMNA	FAROL	Electrónico	BIEN	9	324
CIR-04	CALLE MAGALLANES	FLUORESCENTE COMPACTA	36	COLUMNA	FAROL	Electronico	MAL	15	540
CIR44	CALLE MAGALLANES	VAPOR SODIO ALTA PRESION	260	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	4	1.000
CIR44	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	400	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	6	2.400
CIR-04	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	Electromag.	BIEN	10	1.500
CIR-04	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	1	250
CIR44	AVDA VIVAR TELLEZ	VAPOR SODIO ALTA PRESION	256	COLUMNA	FAROL	E.D.Nivel	BIEN	3	750

Total 148 24.839

Fuente: elaboración propia

4.18.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-018)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - ⇒ Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 4,4 kW,
 - que la potencia demandada por las 117 lámparas más los equipos auxiliares es de 28,5 kW,
 - que la medida en el centro de mando es de 28,51 kW,
 - que dispone de maxímetro ,
 - que la discriminación horaria es con D.H.
 - que la tarifa actual es 2.0.2
 - el factor de potencia es 0,94.
 - ⇒ Estimar lo que están pagando de penalizaciones por el maxímetro 1.802,82 €

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: se recomienda legalizar cuanto antes la situación ya que está sufriendo continuos recargos por el exceso de potencia consumida con respecto a la contratada.
 - Potencia óptima a contratar: En esta ocasión al disponer ya de maxímetro y observando en los datos de campo que la potencia instalada y la medida en el cuadro coinciden relativamente, se recomienda la instalación de 30 kW.
 - Discriminación horaria: teniendo en cuenta la potencia que se recomienda contratar y la tarifa a la cual pertenece la discriminación horaria será la tipo 3P.
 - ➡ Factor de potencia: en este valor no se recomienda realizar cambios ya que en las mediciones tomadas el valor es aceptable. Sin embargo teniendo en cuenta que se va a recomendar la instalación de una potencia superior a 15 kW sería conveniente que durante los primeros meses se realizara un seguimiento de la facturación para comprobar que dicho valor se mantiene entre sus valores óptimos.
 - Ejecución de proyectos: Será necesario realizar un proyecto de instalación ya que la potencia recomendada supera en más de un 50 % la instalada actualmente, esto supone una inversión adicional de 1.500 € para la realización del proyecto y otra inversión posterior para su ejecución en torno a los 117,000 €

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-018-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁴⁷, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 5 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 44 balastos de doble nivel punto a punto.

⁴⁷ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

- Instalación de un reloj astronómico que controle el encendido y la reducción.
- Sustitución /Adecuación de luminarias en mal estado.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 28 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 2.854,4 kWh al año
- Una reducción de emisiones de CO2 de 3,32 toneladas al año
- Un ahorro económico de 428,16 euros al año.

Y sería necesaria una inversión⁴⁸ de 2.988,56 euros amortizable en 6,98 años

Los datos anteriormente mostrados no coinciden con los expuestos en SICAP debido a que el programa tiene en cuenta el cambio de todas las lámparas y balastos y sólo se sustituyen los equipos indicados arriba.

⁴⁸ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipio	MVELEZMALA
Nombre	CMA-016-A
Contagor	87733853
Egnsumo (kWh)	121,111
Costs Actus! (E)	19 232 33
Costs Dpl. (GEFAEM)(C)	19.232,33

Tipo	Potencia (VV)	Carytided 2 ⁻	
FLUORESCENTE COMPACTA	03		
VAPOR MERCURID	125	- 6	
YAPOR SODIO ALTA PRESIDN	411	17.	
VAPOR SODIO ALTA PRESIDN	150	02	
VAPOR SODIO ALTA PRESIDN	250	25	
Total potencia instalada (W)	210	33	

MEDIDAS REALIZADAS

Tensiones de entrada (V)

ENGINEERING STORY
√C€,30 ·
494,11
414,21

Régim en de funcionamiento

Eisterne erkendito	Celus I rebj
Но востретей совтой	L.1T
Horas sousies de	utilización (b)

Regissautourus	.707	
Faguration canada	26.0	

Intensidades nominales (A)

1 3	09,00
	43,40
II.	45,54

Precio elèctrico de referencia (C/KWh)

	GERREY.	Ullitzaco
Situation actual	1216	0.197
Sanocion aplicati	13	3.65

Intensidades reducidas (A)

05,70
44,40
42/11

Casena phi

Gesent oil	3.9∕
Crisnosa 2	174
CANTO (MICO	18

^{*} Los precies temados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lamparas

TIPE-Hickorn	PoliPolitat/Wi	Tomoproposite	Puteron IVI
FLUGRESCENTE COMPACTA	44	-(: -(34
VAPOR MERCURIO	125	VM > VSAF	77)
VAPOR SODIO ALTA PRESION	411	10(50,00 and 10)(0,00)	411
VAPOR SODIO ALTA PRESION	150	Visit Visit	1/11
VAPOR SODIO ALTA PRESION	253	VEAR INVEAR	250
Tips of all	Painting over	The group sto	Bullippe 600
FLUORESCENTE COMPACTA	- 33	70-993	33
VAPOR MERCURIO	125	VM = 2-HV	71
VAPOR SODIO ALTA PRESION	411	الإنهاب المالية	411
VAPOR SODIO ALTA PRESION	13.1	VSAP HM	- 15.0

Incorporación RED-EST

Gradonics	Por Division		
RH SHBT	49,11		
VENT-RED DST	00,00		
Régimen de funcionamie	ento propuesto		
e-steric ehoentido	Astronomico		
HOSE SA PROJECTION	01 00		
Horas anuales de utilizar	ión propuestas		
Rustmen hourshall	1707		
Dr. Jan. alberta Library (1976-1971)	0.070.11		

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAF	HIM	BON	REDEST	VSAP+RED-EST	VSAP+BON	VSAP+BE	HMHBE
Consumo(kWh)	115,966	176,966	96.016	116.088	114.803	94.783	74.767	79.429
Aharro (kWh)	4.145	4.145	25.095	5.023	6.3DB	26.328	46,344	41.682
Coste (€)	18.639,72	21.106.49	15,467.99	18.428.46	18.263.48	15.312,28	12.268,16	16,307,63
Ahorro (C)	692,60	-1.874,16	3,764,33	803.86	968.84	3.920,04	6.974.18	3.924,69
Inversión (€)	589,80	10.218,52	7.909,34	6.739,20	8.143,20	6.131.19	10.997,10	26,362,52
P.Retoma (Años)	0,89	110	-5,45	8,38	8,34	2,07	1,57	6,71

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	HM	2004	REDIEST	VSAP+RED-EST	VSAP4BON	VSAP+HP	HMHBE
Consumo(kWh)	118,888	118,988	98.016	116.088	114.803	94.783	74.767	79,429
Ahorro (kWh)	4.145	4.145	25.095	5.023	8,306	28.328	46,344	41.682
Coste (C)	18.839,72	21.106,49	15.467,99	18,428,48	18,283,48	15,312,28	12,258,15	15,307,63
Аното (С)	592,60	-1.674,16	3.784,33	803,88	966,64	3.920.04	8,974,18	3,924,69
inversión (C)	589,80	10.219,52	7.909,34	6.739,20	6.143,20	6.131.19	10.997,10	26.362.52
P.Retoma (Años)	0,99		2,10	8,38	8,34	2,07	1,67	6.71

4.18.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 3438983700) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 3438983700

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	121.111,00	19.232,33	-	-	-	-	-
Estado futuro	118.256,60	18.804,17	2.988,56	2.854,40	3,32	428,16	6,98

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 2.854,4 kWh al año
- Una reducción de emisiones de CO2 de 3,32 toneladas al año
- Un ahorro económico de 428,16 euros al año.

Y sería necesaria una inversión⁴⁹ de 2.988,56 euros amortizable en 6,98 años

⁴⁹ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.19 SUMINISTRO № 97038000263

4.19.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-019

Este Módulo de Medida, se encuentra situado junto a un centro de transformación CT 82313 en la urbanización Romeral. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 89603853, proporciona energía eléctrica a 52 luminarias distribuidas en 2 circuitos, que pertenece al CMA-019-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 2.0.3, correspondiente a la actual 2.0A, el contador dispone de maxímetro, reloj de discriminación horaria y contador de energía reactiva. En este caso no es necesario que se ejecute el cambio de contador.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **26.613 kWh/año**, y un coste estimado de **4.403,06 €/año**, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,39 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-019

Fuente: Agencia Andaluza de la Energía y elaboración propia


B) CENTRO DE MANDO CMA-019-A

El centro de mando, se encuentra situado en el mismo monolito de mampostería que el modulo de medida, en la parte inferior, y proporciona energía eléctrica a 52 luminarias distribuidas en 2 circuitos.

En términos generales se observa que el cuadro se encuentra en perfectas condiciones, tanto la toma de tierra, las correspondientes protecciones, y el armario se encuentran perfectamente. Por otro lado, el mismo cuenta con reloj astronómico encargado de hacer posible la reducción a través del reductor de flujo. En términos de protecciones, tanto diferenciales con magnetotérmicos protegen los correspondientes circuitos, e incluso se cuenta con un protector contra sobretensiones.

En definitiva el cuadro cumple con el reglamento electrotécnico de baja tensión.

Centro de Mando y Protección CM-019-A

En cuanto a:

- **Balastos de doble nivel**: no tiene este tipo de balastos.
- **Balastos electrónicos**: los balastos instalados no son de este tipo.
- Reducción en cabecera: hay instalado un reductor de flujo marca Salicru modelo RFT 15-4T
- **Telegestión**: No hay sistemas de este tipo instalados en el cuadro.
- Adaptaciones a normativa vigente: No es necesario realizar ninguna adaptación en el cuadro.

Ficha inventario Centro de Mando y Protección CMA-019-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-019-A	
MUNICIPIO DE VELEZ-MÁLAGA	
CALLE NIÑA (LA)	
Monolito jutno al CT 82313 y junto a parque.	

MÓDULO DE MEDIDA

Nº de contador energía activa

89603853	

Nº suministro

97038000263

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

	Cantidad	
	1	
Ī	1	- 1

	Polos/Int.	
Т	4PX40A	
	2PX10A	
è	0	

	Marca	
0.0	OTRO	
	OTRO	
	7	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad	
-	
-	- 11
2	- 1

Polos/Int.	
0	
0	
3PX63A	

Marca	
- 91	
OTRO	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Astronómico
No
Sí
Reduc. Flujo Cabecer
01:00

Marca Marca Marca Marca Hora fin reduc.

ORBIS	
*	
OTRO	
SALICRU	
07:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

BIEN	
BIEN	

Observaciones: Dispone de protector de sobretensiones CIRCUTOR modelo STT-15/400

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m
CIR-01	Alumb.Publ.	4PX25A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	
CIR-02	Alumb, Publ.	4PX25A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	347	-

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	15.6	13.4	12.7
Reducido	11.1	9.9	11,1

TENSIONES DE FASE

VRS	VST	VTR
407.1	408.8	409.3

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta presión, por lo que se puede decir que las lámparas cumplen con el criterio de eficiencia energética.
- **Luminarias**: El 100 % de las lámparas de este circuito son del tipo Columna Farol. Existen dos luminarias en mal estado.

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 88 % son de Vapor de Sodio de Alta Presión por lo son adecuadas desde el punto de vista de la eficiencia energética, mientras que el 12 % son lámparas de vapor de Mercurio y son susceptibles de ser sustituidas.
- Luminarias: el 88 % son del tipo Columna farol mientras que el 12 % son del tipo brazo asimétrico abierto

Fuente: Elaboración propia

Puntos de Luz de Alumbrado Público del CMA-019-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Fuente: Elaboración propia

4.19.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-019)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.

- Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
- Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
- Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 7,5 kW,
 - 🧢 que la potencia demandada por las 52 lámparas más los equipos auxiliares es de 7,88 kW,
 - que la medida en el centro de mando es de 7,10 kW,
 - que sí tienen maxímetro ,
 - que la discriminación horaria es con DH,
 - que la tarifa actual es 2.0.A,
 - el factor de potencia es 0,72.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir en la actual T.U.R, aunque sería posible contratar la energía en el mercado libre.
 - **Potencia óptima a contratar**: Se recomienda seguir con la actual tarifa contratada.
 - Discriminación horaria: Se recomienda dejar la actualmente contratada, ya que es la más adecuada.
 - Factor de potencia: En este caso es probable que se tengan penalizaciones por valor de 157,69 € ya que el modulo de medida tiene contador de energía reactiva. La inversión que se tendría que realizar es de 554,04 € en una batería de condensadores de 5 KVAr. El periodo de retorno es 3,51años.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-019-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁵⁰, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 3 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Sustitución /Adecuación de luminarias (recomendar si es necesario la Sustitución o Adecuación de Luminaria)
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 7,5 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 568 kWh al año
- Una reducción de emisiones de CO2 de 0,66 toneladas al año
- Un ahorro económico de 68,41 euros al año.

Y sería necesaria una inversión⁵¹ de 173,76 euros amortizable en 2,54 años

288

⁵⁰ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

⁵¹ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

Optimización Energética de Cuadros de Alumbrado Público SICAP.V3.2 Fecha de simulación: 23 / 2 / 2010

DATOS GENERALES

MVELEZMAL/
CIMA-019-A
89603563
26,613
4,403.05
4,403,06

2 433

Tipo	Potensia (W)	Cantidat
VAFOR MERCURIO	125	3
VAFOR SODIO ALTA PRESION	150	49
Total potencia instalada (W)	7.7	25

MEDIDAS REALIZADAS

Tenniones de extrada (V)

407,10	7
408,80	7
409,30	Ī
	408,80

Régimen de funcionamiento

Sistema encendido	Reioj astronomico
Horano de reducción	01:00
Horas anuales de	utilización (h)
Cariman manipal 1737	

Interactories	nomina	8a 17	4.5

11 15	15,60
5	13,40
11	12,70

Precio eléctrico de referencia (C/kWh)

	GEFAEM	Utilizado
Situacion actual	0.0985	0.15*
Stracion optimiz	0.0	0.15*

Intensidadea	reducidas	(A)
IL censionardes	teamerans	io)

li .	11,10
15	9,30
18	11,10

Coseno phi

Coseno pri 1	0,79
Desero phi 2	0,58
Cosens phi 3	0.8

^{*} Los precios tomados para el calculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámpææs

Tipo actual	Pot Actual (W)	Tipo propuesto	Pat prop. (W)
VAPOR MERCURIO	125	VM -> VSAP	70
VAPOR SODIO ALTA PRESION	150	VSAP → VSAP	150
Tipo actual	Pot Actual (W)	Tipo propuesto	Pot prop. (W)
VAPOR MERCURIO	125	VM> HM	70
VAPOR SODIO ALTA PRESION	150	VSAP HM	150

Incorporación RED-EST

Simulación	Pot (kVA)
RED-EST	15,CD
VSAPIRED-EST	15,00

Sistema encendido Astronómico

Nora de recipción 04:00

Horas anuales de utilización propuestas

Réguren naninal	1737
Régimen reducido	2463

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	BDN	RED-EST	VSAR+RED-EST	VSAP+BON	ARVINERE.	HWHEE
Consumo(kWh)	26.044	26.044	23.637	24.865	22.662	23.046	18.138	19.643
Ahorro (kWh)	568	568	2.975	1.747	3.950	3,566	8.474	6.969
Coste (€)	4,004,64	5.401,77	3.956,69	4.127,34	3.013,14	3/064,95	3,134,58	4.469,60
Ahorro (€)	68,41	-1.078,70	446,35	275,71	589,91	513,10	1.263,47	-86,53
Inversión (€)	173,76	4.643,69	2,980,44	4.822,80	4.996,56	3,113,55	4.750,26	12,125,69
P.Retorno (Años)	2,53		-4.30	17,49	8,46	6.00	3,74	

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	1400	BDN	RED-EST	VSAP+RED-EST	VSA P+SDN	VSAP+BE	HW+8E
Consumo(k\Vir)	26.044	26,044	23.637	24.866	22.662	23,046	18,138	19,643
Ahorro (kWh)	568	588	2.975	1.747	3.950	3,566	8,474	6.969
Coste (€)	4.334.64	5.481.77	3,955,69	4.127.34	3,813,14	3.884,95	3,134,58	4,469,60
Ahorro (€)	68,41	-1.078,70	446,35	275,71	589,91	513,10	1.263,47	-66,53
Inversión (E)	173,76	4.643,69	2.580,44	4.822.80	4.996,56	3.112,55	4.750,28	12.125,69
P.Retorna (Años)	2,53		8,67	17,49	8,48	6,00	3,74	

4.19.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	26.613,00	4.403,06	554,04	-	-	-	-
Estado futuro	26.045,00	4.334,65	173,66	568,00	0,66	68,41	2,54

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 568 kWh al año
- Una reducción de emisiones de CO2 de 0,66 toneladas al año
- Un ahorro económico de 68,41 euros al año.

Y sería necesaria una inversión⁵² de 173,66 euros amortizable en 2,54 años.

⁵² No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.20 SUMINISTRO Nº 97027811969

4.20.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-020

Este Módulo de Medida, se encuentra en un monolito ubicado junto al centro de transformación nº 80141 situado en la C/ Alfareros. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 53038939, proporciona energía eléctrica a 107 luminarias distribuidas en 7 circuitos, que pertenece al CMA-020-A y a una fuente.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 3.0.2. (Actualmente se corresponde con la 3.0.A), el contador dispone de maxímetro y de reloj de DH; se trata de un contador nuevo digital.

Este suministro presenta un consumo medio en los últimos años de **100.731 kWh**. El coste actual estimado con las tarifas vigentes, es de **11.167,4 €** y respecto al cómputo general del consumo de alumbrado público representa el 1,21 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-020

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-020-A

El centro de mando, se encuentra situado en un monolito junto al centro de transformación nº 80141 ubicado en la C/ Alfareros; proporciona energía eléctrica a 107 luminarias distribuidas en 7 circuitos; además de estos circuitos en cuadro existen dos circuitos más con todas las conexiones hechas que están de reserva de los anteriores y de ellos no cuelga ninguna lámpara.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, tierra, cableado y los elementos de protección. El cuadro tiene instalado un interruptor general y tres protecciones magnetotérmicas. Para el encendido de las luminarias dispone de un reloj astronómico y dispone de balastos de doble nivel en las lámparas y de reducción punto a punto. Todos los diferenciales del cuadro son rearmables.

Se observa en el cuadro un reloj analógico con un magnetotérmicos de 1x10 A que enciende una fuente cercana.

En cuanto a:

- **Balastos de doble nivel**: todos los balastos instalados en el cuadro son de doble nivel.
- Balastos electrónicos: no existen en el cuadro
- Reducción punto a punto: tiene conectada reducción punto a punto con los balastos de doble nivel y está funcionando correctamente.
- Telegestión: no dispone de sistemas de control
- Adaptaciones a normativa vigente: No es necesario se hace necesario ninguna adaptación.

Ficha inventario Centro de Mando y Protección CMA-020-A

DATOS GENERALES

Nombre Municipio MUNICIPIO DE VELEZ-MÁLAGA Via CALLE ALFAREROS Localización

MÓDULO DE MEDIDA

Nº de contador energía activa 53038939 97027811969 Nº suministro

PROTECCIÓN GENERAL

Cantidad Interruptor general P.magnetotérmica P.Diferencial

Polos/Int. 4PX63A n

Marca HAGER

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés Cantidad

Polos/Int. 1PX10A 4PX63A

Marca HAGER HAGER

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Astronómico No Reduc. Flujo p. a.p. 01:00

Marca Marca Marca Marca Hora fin reduc. ORBIS OTRO OTRO 07:00

ESTADO DEL CUADRO

Armario Tierra

BIEN

Cableado Elem.protección BIEN

ODSTITUTORIO LOS DIFERENCIALES SON REARMABLES HAY UN RELOJ ANALÓGICO CON UN MAGNETOTERMICO QUE ENCIENDE UNA FUENTE. (APAGADA DURANTE LA MEDICION)

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P Dif	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-001	Alumb Publ	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	
CIR-002	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	- 6	20-1
CIR-003	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	1
CIR-004	Alumb Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	-
CIR-005	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	1
CIR-006	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	-
CIR-007	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	-
CIR-008	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	
CIR-009	Alumb.Publ.	3PX25A	HAGER	4X40A30	OTRO	Cobre	E.B.Tubo	6	

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Dégimes	78547	Tarter S	Γ±∞ T
Named	80	306	40
Deducido	82	20 €	У

TENSIONES DE EASE

V78	VST	277
1.0	/06 E	109.0

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna semiesférica el 61% y el resto son del tipo columna simétrico cerrado.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo columna semiesférica.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna semiesférica el 88% y el resto son del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son del tipo columna semiesférica el 44 % y el resto del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 5

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo columna semiesférica.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-020-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Centro de mando:

Municipio Municipio Municipio Municipio

Circuito	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P.eireuito(W
CIR-001	CMNO ENMEDIO (DE)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	2	600
CIR-001	CALLERIO GUADALQUIVIR	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA ABIERTA	E,D.Nivel	BIEN	1 1	150
CIR-001	CALLERIO GUADALQUIVIR	VAPOR SOCIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	- 6	1.260
CIR-001	CTRA CIRCUNVALACION TORRE DEL MAR	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E,D.Nivel	BIEN	22	3.300
CIR-002	CTRA CIRCUNVALACION TORRE DEL MAR	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E,D,Nivel	BIEN	13	1,950
CIR-002	CTRA CIRCUNVALACION TORRE DEL MAR	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E.D.Nivel	BIEN	11.7	600
CIR-002	CTRA CIRCUNVALACION TORRE DEL MAR	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E.D.Nivel	MAL	1	150
CIR-003	GALLE PLATEROS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	3	450
CIR.003	RTDA CANONIGO DE MALAGA	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E,D,Nivel	BIEN	2	300
CIR-003	CALLE CAMINO VIEJO DE VELEZ-MALAGA	VAPOR SODIG ALTA PRESION	150	COLUMNA	OTRO	E,D,Nivel	EIEN	14	2.100
CIR-003	CALLE CAMINO VIEJO DE VELEZ-MALAGA	VAPOR SOOID ALTA PRESION	150	COLUMNA	OTRO	E.D.Nivel	EIEN	- M	2.100
CIR-004	CALLE HERREROS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	4	600
CIR-004	CALLEALFAREROS	VAPOR SODIO ALTA PRESION	150	BACULO	A SIMETRICA CERRADA	E,D,Nivel	BIEN	7	1.050
CIR-004	CALLE CAMINO VIEJO DE VELEZ MALA GA	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E.D.Nivid	BIEN	7	1.050
CIR-005	CALLE HERREROS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivid	BIEN	6	900
CIR-005	CALLEALFAREROS	VAPOR SODIO ALTA PRESION	150	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	6	750
CIR-005	GALLE ENMEDIO	VAPOR SODIO ALTA PRESION	150	BACULO	A SIMETRICA CERRADA	E.D.Nivel	BIEN	8	1.200
CIR-007	CTRA CIRCUNVALACION TORRE DEL MAR	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	E.D.Nivel	BIEN	10	1.500
								128	19,900

Fuente: elaboración propia

4.20.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-020)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - ⇒ Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 24,8 kW,
 - oque la potencia demandada por las 107 lámparas más los equipos auxiliares es de 22,8 kW,

300

- que la medida en el centro de mando es de 24,4 kW,
- que tiene maxímetro ,
- que la discriminación horaria es con D.H.
- que la tarifa actual es 3.0.2,
- el factor de potencia es 0,94.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada y contratar una potencia algo superior que cubra la demanda, en este caso se tendrá que contratar la potencia a través de una comercializadora de libre mercado. Se recomienda, por otro lado, individualizar el consumo de la fuente contratando un nuevo suministro exclusivo para ésta.
 - Potencia óptima a contratar: Se recomienda contratar 25 kW.
 - ➡ Discriminación horaria: teniendo en cuenta la potencia requerida y la tarifa a la que pertenece dicha potencia es conveniente la contratación de la tipo 3P.
 - Factor de potencia: no es necesario ninguna mejora en este sentido
 - Proyecto de instalación: no es necesario realizar un nuevo proyecto de instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-020-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando no se hace necesaria ninguna actuación en el mismo ya que dispone de equipos como: lámparas de vapor de sodio de alta presión y equipos auxiliares capaces de disminuir el flujo lumínico a determinadas horas del día.

DATOS GENERALES

Municipio	MVELEZMALA	
Nombre	CMA-020-A	
Contador	53038838	
Consumo (kWh)	81,909	
Coste Actual (6)	13.347.74	
Coste Opt. (GEFAEMKE)	13.347.74	

Tipo	Potencia (VV)	Cantidad	
VAPOR SODIO ALTA PRESION	153	-2-	
VAPOR SODIO ALTA PRESION	201		
Total potencia (natalada (W)	ké éru		

MEDIDAS REALIZADAS

40,0

Tensiones de entrada (V)

V 08	4.10
WAL	106.60
MAD.	4.3-81

Régimen de funcionamiente

Sistema emperatur.	De paramin
rtrado de reduceión.	n c
Horas anuales de	utilización (h)

Regiment segment	1,707
Pagimen regusido	2/32

intensidades nominales (A) 23, 0 20,30

Precio eléctrico de referencia (E/kWh)

	DETROITED	Unicate
Atual teresetual	3,1138	1,357
Illinsepticolitis	3.3	C.151

Intensid	ades reducidas (A)	
11	16.51	
140	20 13	
100	Satisfy	

Coseno phi

EG2KKB W.C.	CF1
Constant I	10.14
2000 AB 6	C.85

[&]quot; Les practes temades para el cálcule han side introducidos por el usuarle.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Tiptomittie	Prot Renor (VV)	Tipo pier jeno	Polymen III	
VAPOR SODIO ALTA PRESION	153	YGAP YGAP	193	
VAPOR SODIO ALTA PRESION	250	Vach Hyang	25)	
(pt.edus)	[764.00ma 190]	Tipo gropuesto	Prospret W	
VAPOR SODIO ALTA PRESION	1:1	7044 HR	150	
VAPOR SODIO ALTA PRESION	250	Vaca or the	250	

Incorporación RED-EST

Stripling 61	PROM		
REJ-EST	SUCC		
VOOF RED DOT	CC CC		

Régimen de funcionamiento propues to

THE RESERVE OF THE PARTY OF THE	
Horas anuales de utilizaci	ón propuestas
Registro cercina	161

2160

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	EIDN	RED-EST	V SARHRED-EST	VSA PHEIDN	VSAPHEE	HMHE
Consumo(kWh)	81.903	81,903	82.242	80.823	80.823	82,242	54,509	70.057
Ahomo (kWh)	0	0	-338	1.079	1.079	-338	17.213	11.845
Coste (C)	13,347,74	18.162.97	13,396,55	13.149,88	19,149,88	13,396,55	10.729,87	14.255,14
Ahorro (C)	0,03	-2.816,23	-50,81	197,85	197.96	-50,81	2.617.86	-807,40
inversión (C)	0,00	11,505,31	7.672,19	6,653,60	6,683,60	7.672,19	11.580,00	29,944.31
P.Retomo (Años)	4			28.06	28,06	72	4:45	

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	YSAP	HM	EXXIII	RED-EST	V SAPHRED-EST	VSAP+BON	VSAP+BE	HANNE
Consumo(kWh)	81.903	81,903	82,242	80.823	80.823	82.242	64,689	70.057
Ahomo (kWh)	0	0	-338	1.079	1.079	-338	17.213	11.845
Coste (€)	13,347,74	18.162.97	13.396,55	13.149,88	13.149.88	13.386,55	10.729,87	14.255,14
Ahorro (C)	0.00	-2.815.23	-50,81	197.85	197,65	-50,81	2,617,88	-907,40
inversión (C)	0.00	11,505,31	7,572,19	5.553.60	5,553.60	7.572,19	11,680,00	29.944,31
P.Retomo (Años)		j•	7 3	29,06	28.06		4.46	*

Week Subitution on comparative process such Afairments
Ith Subitution telephones in Regional mediatus
4. No consider an Editoria action part the American and the Health Independent of Editoria action process and the Afairments at a subject to the American and the Afairments at the Afairments at the Afairments and Afairmen

4.20.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 97027811969) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 97027811969

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	81.903,00	13.347,74	-	-	-	-	-
Estado futuro	81.903,00	13.347,74	-	-	-	-	-

Fuente: Elaboración propia.

Se estima que:

- No se consigue ahorro energético en este cuadro.
- No se reducen las emisiones de CO2
- El ahorro económico y la inversión son inexistentes.

4.21 SUMINISTRO Nº (MMA-021)

4.21.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-021

Este Módulo de Medida, se encuentra junto al centro de transformación 100270 en la circunvalación parque María Zambrano; en el núcleo urbano de Vélez Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 2158953, proporciona energía eléctrica a 61 luminarias distribuidas en 5 circuitos, que pertenece al CMA-021-A.

El contador es del tipo Digital, trifásico y cuenta con reloj de discriminación horaria, contador de reactiva, así como con maxímetro. Actualmente no se tiene constancia de la facturación de este suministro, supuestamente porque es un cuadro de nueva incorporación.

En función de lo anterior no se puede tener constancia del coste total del suministro, tomándose como representativo el estimado por la herramienta SICAP, estando representado.

Este suministro presenta un consumo medio en los últimos años de **46.246 kWh.** El coste actual estimado con las tarifas vigentes, es de **7.947,79** € y respecto al cómputo general del consumo de alumbrado público representa el 0,68 %. (Incluir otras observaciones de interés, adaptación a normativa vigente, etc.)

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-021

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-021-A

El centro de mando, se encuentra situado en la circunvalación María Zambrano, dentro del núcleo urbano, proporciona energía eléctrica a 61 luminarias distribuidas en 5 circuitos.

El cuadro se encuentra en muy buen estado tanto el armario, cableado y los elementos de protección. La toma de tierra es otro de los aspectos que se encuentra presente en este cuadro.

El cuadro dispone de interruptor general, además de reloj astronómico que controla el encendido de las lámparas y el inicio de la reducción.

Todos los circuitos disponen de magnetotérmicos y diferenciales.

Centro de Mando y Protección CM-021-A

En cuanto a:

- Balastos de doble nivel: tiene instalados 38 equipos de estas características.
- **Balastos electrónicos**: no existen este tipo de equipos en el cuadro.
- **Reducción en cabecera**: No existe ningún equipo con estas características
- **Telegestión**: no dispone de sistema de telegestión instalado.
- Adaptaciones a normativa vigente: Es necesario que el suministro, si aún no lo tiene, legalice un contrato con una comercializadora.

Ficha inventario Centro de Mando y Protección CMA-021-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-021-A	
MUNICIPIO DE VELEZ-MÂLAGA	
CALLE SIN NOMBRE CERCA ENMEDIO	
Monolito junto a los CT 100270, 100278 y 100281	

MÓDULO DE MEDIDA

Nº de contador energía activa

2158953

Nº suministro

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad		
	*	
Ī	*	
-		-

	Polos/Int.		
Г	4PX40A		
	0		
Ī	0		

	Marca	
	OTRO	
	94	
7	14	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad		
	1	
	1	- 2
	4	

Polos/Int.		
2PX10A	- 1	
2X25A30	1	
3PX125A		

Marca	
OTRO	
 OTRO	
OTRO	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Marca Marca Marca Marca Hora fin reduc.

	ORBIS	
	-	-
	OTRO	
100	-	
	07:00	-

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

	BIEN	
11	BIEN	

Observaciones:

Tiene tambien protector de sobretensiones marca CIRPROTEC modelo C54-15/400

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR-01	Alumb, Publ.	4PX16A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	-
CIR-02	Alumb.int.	4PX16A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	
CIR-03	Alumb.Publ.	4PX16A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	
CIR-04	Alumb,Publ.	4PX16A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	
CIR-05	Alumb, Publ.	4PX16A	OTRO	4X40A300	OTRO	Cobre	E.B.Tubo	6	1

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	18.3	18.3	17.5
Reducido	15	15.9	15.3

TENSIONES DE FASE

VRS	VST	VTR
415.5	412.8	414.8

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 100 % son columna asimétrica cerrada.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: 6, (75 %) son del tipo columna asimétrica cerrada, mientras que 2 (25 %) son del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de halogenuro metálico por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo báculo asimétrico cerrada semiesférica.

Fuente: Elaboración propia

Circuito 5

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas de tipo báculo asimétrico cerrada semiesférica.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-021-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLIÇO

Centro de mando	DM2-621-A	
Nunkiris	MUNIOR CICE VELSE MALACIA	

Glesselle	Vie	Lorsper	Pokreie/Wi	Go poete:	Lawrence	Equinar	Entodo	Limiteden.	Potenting!
CBC	CALLE SH WOMEN'S CERTA SERVEDIO	VAFOR SOME ALTA PRESIDE	268	COLUMNA	ARREST NO. CHARAGO	EDMAI	81	12	138
CHICS	CALLE MADUEL LOSE DUNAS	VAPUE SUCK ALIA PREATRI	ThE	BECOLD.	ASSMET HICK CERNADA	E D. MWH	- 5	2	3.0
CBHC5	CATTE 3.44 AOMBLE CENTEV BLATELO	VAPOR SOCIO AL "A PREDION	254	COLUMN	ASSISTED ADD TOPICAL	E.D.Myel		- 0	1230
CIF-61	OTRA GAMISCIO	UNFOR BODIC ALTA PRESIDE	168	BACULO	ASSMETRICA CERRADA	E D. Host	- 2	g g	1,356
CB-03	EMEDIA CHIMECIC	VAPOR SODIC ALTA PRESIDE	108	SPOULD	ASSISTET NO. CERRADA	E D. Shell		2	300
CIP-CO	I AGROCON ARTO	VAFOR SOCIALTA "RESIGN	186	6.FGULD	ASSISTANCE CERRADA	ED.Wet	*		900
cin co	CALLE MANUAL LOSS DURAN	VAPOR SOCIO ALTA PRESIDE	CHE	BACHER .	ACCUSTNICA DISTRADA	ED High	-	,	950
CHAR	AVAIN HIREDIC	HALDON VINCE PRIADICUS	168	COLUMN	ANTINETRICA CRARGON	Mostrang	4.	8	100
CMI-CH	DIRA CARRE DRA 4	HISLOGIE VLEYDS PRETALICOS	108	COCUMAN	ASSMET ROOK CIERRADA	инститац	67	2	200
OSP-04	GALLE AGEMUNEROS	HALDSE VURDS METALICOS	108	MINULCO	ASSMCTRICA OCRRADA	Decromag		2	200
CIN-CS	OTRA EMPRESO	HALDGE YURGS PIETALIGOS	104	AMYULIOD	ASHMETRICA DERRADA	Detromes	100	3	300
CBLCS	FANDE FINE TO	HAT DOM WHOS PRIALICOS	108	COLUMN	ASSESSED CHARACTA	Macking.		. 7	300
CMC	CALLE MANUEL - ONE CONTROL	HALLONE MIRCOLPHICALISTIN	166	COLLEGE	ASSMETHANCE COMMANDA	Hectromag	4		9.00

Fuente: elaboración propia

4.21.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-021)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

En este suministro no se ha tenido acceso a facturación, por lo que las estimaciones ofrecidas están en función de lo que debería de contratarse según el uso del suministro y la potencia real instalada.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: El suministro demanda una potencia según las mediciones realizadas en el cuadro de 11,88 kW, lo cual quiere decir que se debe contratar la energía en el libre mercado a través de un comercializador de libre mercado.
 - Potencia óptima a contratar: Se recomienda contratar 13,15 kW de potencia
 - Discriminación horaria: Se recomienda contratar la discriminación horaria "Con DH".
 - ➡ Factor de potencia: No es necesario la instalación de una batería de condensadores, ya que el factor de potencia es 0,91
 - Ejecución de proyectos: Se prevé que se ha realizado ya el pertinente proyecto de instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-021-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁵³, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- El cuadro se encuentra optimizado desde el punto de vista de la eficiencia energética, por lo que no se proponen cambios en esto sentido.
 - Potencia recomendada: 13 kW

A continuación se expone la tabla de SICAP a título informativo.

⁵³ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Simulación de medias de ahorro energético y económico según SICAP

Optimización Energética de Cuadros de Alumbrado Público SICAP.V3.2 Fecha de simulación: 16 / 2 / 2010

DATOS GENERALES

Municiple	MVELEZMALA
Nombre	CWA-021-A
Contactor	2158953
Consumo (kWh)	46,246
Coste Antisal (€)	7.947,79
Coste Oct. (GEFAEM)(E)	7.347,79

Tipe	Potencia (W)	Cantidas
HALOGENUROS NETALICOS	100	20
VAPOR SODIO ALTA PRESION	*50	20
VAPOR SODIO ALTA PRESION	250	18
Total poloncia instalada (W)	9,80	99

MEDIDAS REALIZADAS

Tensionas de entrada (V)

Vis	415,50
VH	412,80
361	414,80

Régimen de funcionamiento

Sistema aucanoido	Reloj astronomico
Horsrio de raducción	01:00
Horas anuales de	utilización (h)
Paners south	1.737

Régimen nominal	1.737
Régimen redocido	2,463

Programa	aons nominales (A)
Hr.	18,30
10	18,30
38	17,50

Procio electrico de referencia (E/kWh)

	DEFARM	Unitrado
Situación actual	0.0	0.16%
Sausoion optimiz.	0.0	0.15*

Intensidades reducidas (A)

lr.	15,00
9	15,90
10	15,30

Cosono phi

Caseno pt 1	6.92
Coseno phi 2	0.86
Cosena phi 3	0.93

^{*} Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Bustitución de lámbaras

Tipo actual	PotActual (W)	Тіро ряокчевто	Potanop. (W)	
HALOGENUROS WETALICOS	100	HM -> HM	100	
VAPOR SODIO ALTA PRESION	150	VSAP -> VSAP	150	
VAPOR SODIO ALTA PRESION	250	YSAP> VSAP	250	
Tipo actual	Put Actual (VV)	Тіра ргориязіл	Pot pup (W)	
HALOGENUROS WETALICOS	100	HM->HM	100	
VAPOR SODIO ALTA PRESION	153	VSAP -> HM	150	
VAPOR SODIO ALTA PRESION	753	VSAP> HM	290	

Incorporación RED-EST

- Birctulación:	(Pot (RVAC		
RED-EST	15.00		
VSAP+RED-EST	15,00		
Régimen de funcionamie	ento propuesto		
Sistema proerciado	Astronômico		
Hore de reducción	01:90		
Horas anuales de utilizad	ión propuestas		
Réginamionnel	1737		
Régimen reducido	2463		

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAF	HMS	BDN	RED-EST	VEAP-RED-EST	VSAP+BON	VBAP+BE	HW+BE
Consumo(kWh)	46.246	46.246	41.497	47.208	47.208	41.497	30,614	32.621
Aherra (kWh)	0	0	4,748	-962	962	4.748	15,631	13.724
Costc (€)	7.947,79	8.735,00	7.235,52	8.038,96	8,038,96	7.235,52	5:549,83	6,581,64
Ahorro (E)	00,0	-787,21	712 25	-91,16	-91,16	712,26	2:397,95	1,366,15
inversión (C)	0,00	3.350,20	2,410,40	4.822,80	4.822,50	2.410,40	7.544,00	12,704,20
P.Retorno (Anos)			-4,25		-	3,38	3,18	9,29

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	HM	BON	REGIEST	VSAP-RED-EST	VSAP+BON	VSAFFEE	HMHRE
Consumo(kWh)	46.246	46.246	41.497	47.208	47.208	41.497	30,514	32.521
Ahorra (kWh)	0	0	4.746	-662	962	4.748	15:031	13.724
Coste (€)	7.947,79	8.735,00	7.235,52	8.038,95	8.039,96	7.230,52	5.549.03	6.581,64
Ahorro (€)	0,00	-787,21	712 25	-91,16	-91,16	712,26	2,397,95	1,366,15
Inversión (€)	0,00	3.340,26	2.410,40	4.822,80	4.522,50	2.410,40	7.544,00	12,704,20
P.Retorno (Anos)		14	3,38		,	2,38	3/18	9,29

4.21.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (MMA-021) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro MMA-021

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	46.246,00	7.947,79	-	-	-	-	-
Estado futuro	46.246,00	7.947,79	-	-	-	-	-

Fuente: Elaboración propia.

Se estima que:

- No se alcanzan ahorros energéticos
- No se disminuyen las emisiones de CO2
- Un ahorro económico y la inversión es cero.

4.22 SUMINISTRO Nº 2995174800

4.22.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-022

Este Módulo de Medida, se encuentra situado junto a un centro de transformación en la urbanización Rubeltor en la C/ Guadalquivir. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87672023, proporciona energía eléctrica a 18 luminarias distribuidas en 2 circuitos, que pertenece al CMA-022-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 2.0.3, correspondiente a la actual 2.0A, el contador dispone de maxímetro, reloj de discriminación horaria y contador de energía reactiva. En este caso no es necesario que se ejecute el cambio de contador.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 20.929 kWh/año, y un coste estimado de 3.312,43 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,31 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-022

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-022-A

El centro de mando, se encuentra al igual que el módulo de medida junto al centro de transformación en la C/ Guadalquivir, dentro del núcleo urbano, proporciona energía eléctrica a 18 luminarias distribuidas en 2 circuitos.

En términos generales se observa que el cuadro no se encuentra en malas condiciones, tanto el armario como la toma de tierra están dentro de lo marcado por la normativa. Por otro lado, no cuenta con protecciones diferenciales, teniéndose que instalar obligatoriamente las mismas ya que protegen contra las posibles derivaciones.

El cableado del circuito 2 no cumple con la normativa al tener una sección inferior a la obligatoria.

Centro de Mando y Protección CM-022-A

En cuanto a:

- Balastos de doble nivel: no tiene equipos de este tipo.
- **Balastos electrónicos**: los balastos instalados no son de este tipo.
- **Reducción en cabecera**: no hay instalado reducción en el cuadro.
- **Telegestión**: No hay sistemas de este tipo instalados en el cuadro.
- Adaptaciones a normativa vigente: Se deben instalar en el cuadro protecciones diferenciales en todos los circuitos del cuadro. Sustituir el cableado del circuito nº 2

Ficha inventario Centro de Mando y Protección CMA-022-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre
Municipio
Via
Localización
Atomillado

	CMA-022-A	
	MUNICIPIO DE VELEZ-MÁLAGA	
	CALLE RIO GUADALQUIVIR	
0	a la entrada del Centro de Transformación nº 4130	

MÓDULO DE MEDIDA

Nº de contador energía activa

87672023	
01012020	

Nº suministro

2995174800

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad	

Polos/Int.		
	3PX40A	
	0	
	0	

	Marca	
	ABB	
1 0	- J-	
	19	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad	
2	
-	
1	
	2 - 1

Polos/Int.		
	1PX10A	7
	0	
	3PX63A	

Marca	
ABB	
-	
SPRECHER	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

$\overline{}$		
	Analógico	
	Si	
	Si	
	No tiene	
	414	
		_

Marca Marca Marca Marca Hora fin reduc.

0.0	OTRO	-
	OTRO	
2.7	ABB	
1	**	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

REGULAR	
MAL	

Observaciones:

No tiene protección diferencial alguna. Con el peligro que conlleva.

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR1	Alumb.Publ.	3PX25A	ABB	0	100	Cobre	E.B.Tubo	6	8
CIR2	Alumb.Publ.	3PX16A	MEDEX	0		Cobre	Mixta	2.5	_ W _

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	10.7	6.6	5.8
Reducido	10.7	6.6	5.8

TENSIONES DE FASE

	TO DE I	1101
VRS	VST	VTR
413	412	411

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 71,42 % son de Vapor de Sodio de Alta Presión por lo son adecuadas desde el punto de vista de la eficiencia energética, y el 28,57 % son de Vapor de Mercurio.
- Luminarias: son de tipo báculo asimétrico cerrado (50 %), columna esférica (40 %) y columna semiesférica (10 %).

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna asimétrica cerrada (100 %).

Fuente: Elaboración propia

Puntos de Luz de Alumbrado Público del CMA-022-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Centro de mando CMA-022-A

Município MUNICÍPIO DE VELEZ-MALAGA

Circuito	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P.circuito(W
CIR1	CALLE RIO GENIL	VAPOR MERCURIO	125	COLUMNA	ESFERICA	Electromag.	BIEN	2	250
CIRT	CALLE RIO GENIL	VAPOR SODIO ALTA PRESION	150	COLUMNA	OTRO	Electromag.	BIEN	-1-	150
CIR1	CALLE RIO GENIL	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	Electromag.	BIEN	2	500
CIRT	CALLE RIO GUADALHORGE	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA GERRADA	Electromag.	BIEN	1	250
CIR1	CALLE RIO GUADALHORCE	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	Electromag.	BIEN	4	1.000
CIR1	CALLE RIO GUADALQUIVIR	VAPOR MERCURIO	125	COLUMNA	ESFERICA	Electromag.	BIEN	2	250
CIR1	CALLE RIO GUADALQUIVIR	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	Electromag.	BIEN	2	500
CIR2	CALLE RIO GUADALETE	VAPOR SODIO ALTA PRESION	250	BRAZO	ASIMETRICA CERRADA	Electromag.	BIEN	3	750
CIR2	CALLE RIO GUADALQUIVIR	VAPOR SODIO ALTA PRESION	250	BRAZO	ASIMETRICA CERRADA	Electromag.	BIEN	2	500
CIR2	CALLE EXPLANADA DE LA ESTACION	VAPOR SODIO ALTA PRESION	250	BRAZO	ASIMETRICA CERRADA	Electromag	BIEN	3	750

Fuente: Elaboración propia

4.22.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-022)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 7,89 kW,
 - que la potencia demandada por las 22 lámparas más los equipos auxiliares es de 5,63 kW,
 - que la medida en el centro de mando es de 4,73 kW,
 - que sí tienen maxímetro ,
 - que la discriminación horaria es con DH,
 - que la tarifa actual es 2.0.A,
 - el factor de potencia es 0,86.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.0 A modo 1 dentro de la T.U.R.
 - Potencia óptima a contratar: Se recomienda seguir con la actualmente contratada, en previsión de aumentos de potencia.
 - Discriminación horaria: Se recomienda dejar la actualmente contratada, ya que es la más adecuada.
 - ➡ Factor de potencia: En este caso no se recomienda instalar ninguna batería de condensadores, ya no se prevén recargos.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-022-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁵⁴, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 4 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 4 balastos electrónicos para lámparas de Sodio de 70 W con reducción marcada a la 1:00 A.M
- Instalación de 1 balastos electrónicos para lámparas de Sodio de 150 W con reducción marcada a la 1:00 A.M
- Instalación de 17 balastos electrónicos para lámparas de Sodio de 250 W con reducción marcada a la 1:00 A.M
- Instalación de un reloj astronómico que controle el encendido y la reducción de flujo.
- Sustitución /Adecuación de luminarias (recomendar si es necesario la Sustitución o Adecuación de Luminaria)
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 7,5 kW

⁵⁴ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 9.270 kWh al año
- Una reducción de emisiones de CO2 de 10,78 toneladas al año
- Un ahorro económico de 1.376,02 euros al año.

Y sería necesaria una inversión⁵⁵ de 2.713,68 euros amortizable en 1,97 años

⁵⁵ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipio	MVELEZIMALA
Nombre	CM14-022-A
Contador	87672023
Consumo (kWh)	20,925
Coste Actuar (6)	3,330,76
Coste Opt. (GEFAEMI(E)	3.830.78

Tipo	Potencia (VV)	Cantidad
VAPOR MERCURIO	125	4
VAPOR SODIO ALTA PRESION	150	1
VAPOR EODIO ALTA PRESION	250	19
Total potencia instalada (W)	5.4	כמ

MEDIDAS REALIZADAS

l'ensiones de entracta (V)

VIII	413,00	
Vel	412.00	
Vrt	411,00	

Regimen de funcionemiente

Sistema encendido	Celula + relo _j
Horanó de reducción	. 2
Horas anuales de l	utilización (h)

Regimen nominal	4,300
Regimen reditorio	0

Intensidades nominales [A]	
tr	10.7C
16	6 60
R.	6.80

ele alcabilea de referencia (ERAMA)

	GEFAEM	Lifetano
Situación actual	D.1344	0.15*
Shiación optimiz	0.0	0.15*

Intensidades reducidas (A)	
11	10.70
16	6 €0

6 80

Casena par 1	0.86
Doseno pri 2	0.35
Coseno pri 3	0.87

^{*} Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de ámparas

Tipo actual	Pot Actual (V/)	Tipo propuesto	Pot prop. (W)
VAPOR MERCURIO	125	VM> VSAP	70
VAPOR SODIC ALTA PRESION	150	VSAP -> VSAP	150
VAPOR SODIO ALTA PRESION	250	VSAP VSAP	250
Fice netuca	Pot Action (W)	Tipo propuesto	Petprop (W)
VAPOR MERCURIO	125	VM >HM	70
VAPOR SODIC ALTA PRESION	150	VSAP > HM	150
VAPOR SODIO ALTA PRESION	250	VSAP -> HVI	250

Incorporación RED-EST

SHIPMAGION	P.OCUERNA
RED-EST	7,50
VSAF-RED-EST	7,30
Régimen de funcionami	ento propuesto
Sistema encendido	Astronómico
Hota de reducción	07.00

Regimen normal	1737
Régimen reducido	2463

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	1400	BOW	HEU-EST	VSAP+RED-EST	VSAP+SUN	VSAPHEE	PINHEE
Consumo(kWh)	19.609	19.909	16.768	16.377	14 630	15.009	11.709	12.631
Ahorro (kWh)	1.319	1.319	8.170	4,662	6.298	6,919	9.219	6.247
Coste (€)	3.156,11	3.619,48	2.565,12	2,639,36	2.399.58	2.466,13	1.961.52	2 549,85
Ahorro (C)	174,64	-288,72	776,64	691,40	931,17	864,62	1,969,23	780,90
Inversión (€)	501,08	2.326,50	1.011.20	4.800,00	5,031 68	1.988,68	2.933.03	5.795,50
P.Retorno (Años)	2.04		-8.06	8,94	5.40	2.30	2.14	7,42

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	HM	BDW	RED-EST	VSAP+RED-EST	VSAP+BON	VSAP+RE	HMHBE
Consumo(kWh)	15.609	19.809	16.768	16.377	14.630	15.009	11.709	12.681
Ahorro (kWh)	1.319	1,319	5.170	4.552	5.298	5.919	9,219	8.247
Coste (€)	3,166,11	3.819,48	2.566,12	2,639,36	2.399 68	2.486,13	1,961,52	2,549,85
Ahorro (€)	174,64	-288,72	776,64	691,40	931,17	864,62	1,349,23	780,90
Inversión (€)	521,68	2.328,50	1.811,20	4.800,00	5,001.68	1.983,68	2.933,63	5 795,60
P.Retorno (Años)	3,04	- 2	2,33	6,94	5.40	2,30	2.14	7,42

VSAP: Sustitución de lamparas Vapor de Socia A te Presión
HM: Sustitución de lamparas Haloge rums metál cos
BUR: Incorporación de balastes electromagneticos de doble nivel
RED EST incorporación de balastes electromagneticos de doble nivel
RED EST incorporación de balastes electronicas
BE incorporación de balastes electronicas
La medica con mayor ahumo en ergetico para un pre de 130 años se na resaltace en color narcinga
Nicla 1: No se ha lancio en questa en las optimizaciones posibles inversiones asociadas a cambio de luminarios, ni modificación de las lineas.
Nicla 2: Inversión asociada a cambio de essenta de encendido incluida en las optimizaciones.

4.22.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	20.929,00	3.312,43	-	-	-	-	-
Estado futuro	11.659,00	1.936,41	2.713,68	9.270,00	10,78	1.376,02	1,97

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 9.270 kWh al año
- Una reducción de emisiones de CO2 de 10,78 toneladas al año
- Un ahorro económico de 1.376,02 euros al año.

Y sería necesaria una inversión⁵⁶ de 2.713,68 euros amortizable en 1,97 años.

56 No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.23 SUMINISTRO Nº 80009859900

4.23.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-023

Este Módulo de Medida, se encuentra en la fachada del polideportivo ubicado en la C/ Alcalde Manuel Reyna; dentro del núcleo urbano de Vélez-Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87733332, proporciona energía eléctrica a 32 luminarias distribuidas en 3 circuitos, que pertenece al CMA-023-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 y tarifa 2.0.3. (Actual 2.0.A), el contador dispone de maxímetro y de reloj de DH.

Este suministro presenta un consumo medio en los últimos años de **42.243 kWh**. El coste actual estimado con las tarifas vigentes, es de **4.721,02** € y respecto al cómputo general del consumo de alumbrado público representa el 0,62 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-023

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-023-A

El centro de mando, se encuentra situado en la C/ Alcalde Manuel Reyna junto al módulo de medida; proporciona energía eléctrica a luminarias distribuidas en 3 circuitos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. La toma de tierra se encuentra en mal estado, cada circuito dispone de un magnetotérmico de 1x10A para el doble nivel que tiene instalado. Dispone de un interruptor general con su protección diferencial y además tiene instalado protecciones magnetotérmicas para la maniobra. Para el encendido de las lámparas tiene instalado un reloj analógico y también dispone de fotocélula.

Centro de Mando y Protección CM-023-A

En cuanto a:

- **Balastos de doble nivel**: todas las lámparas del cuadro disponen de balastos de este tipo.
- **Balastos electrónicos**: no hay instalados balastos de este tipo en el cuadro.
- Reducción punto a punto: la reducción practicada es la que se produce punto a punto con los balastos de doble nivel.
- **Telegestión**: el cuadro no dispone de sistemas de control instalados
- Adaptaciones a normativa vigente: deben instalarse en los circuitos protecciones diferenciales.

Ficha inventario Centro de Mando y Protección CMA-023-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-023-A	
MUNICIPIO DE VELEZ-MÁLAGA	
CALLE BULERIAS	
EMPOTRADO EN VALLA POLIDEPORTIVO	

MÓDULO DE MEDIDA

Nº de contador energía activa

87733332

Nº suministro

80009859900

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad					
	2				
îi.	-				
	1				

Polos/Int.	
4PX50A	4
0	ij
4X63A300	1

Marca	
MEDEX	- 4
Ç.	
MEDEX	- 4

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad					
E	1				
	-				
Ħ	2				
	2				

Polos/Int.					
26	PX6A				
	0				
3F	X63A				

	Marca	
	MEDEX	
1 1	~	_]:[
	OTRO	- 11

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

~		
T	Analógico	Ľ
Ī	Si	Į,
	Si	
E	Reduc, Flujo p. a p.	
ł	01:00	Ð

Marca Marca Marca Marca Hora fin reduc.

	OTRO	
	OTRO	H
	SIEMENS	
		- 34
+ =	07:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	-17
MAL	

Cableado Elem.protección

11	BIEN	_ 1 41
II	MAL	

Observaciones:

CADA CIRCUITO TIENE UN MAGNETO DE 1x10A PARA DOBLE NIVEL

CIRCUITOS DE SALIDA

Circuito	Tipe	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb Publ	3PX25A	MEDEX	0		Cobre	E.B.Tubo	6	-
OIR-02	Alumb Publ.	3PX25A	MEDEX	0 -		Cobre	E.B.Tubo	6	11 -047
CIR-03	Alumb Publ.	3PX25A	MEDEX	0 -		Cobre	E.B.Tubo	6	

330

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	21.9	19.1	21.9
Reducido	17.3	13.3	16,1

TENSIONES DE FASE

LITOIONEO DE I MOL							
VRS	VST	VTR					
403.9	402.5	403.2					

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 58 % son de Vapor de Sodio, y tan sólo el 42 % son de Halogenuro Metálico por lo que existe un grupo que no son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son de tipo báculo asimétrico cerrado y del tipo columna cónica con difusor.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

■ Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.

Luminarias: son todas de tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo báculo asimétrico cerrado y del tipo columna asimétrica cerrada.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-023-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO Centro de mando Município Município Município E VELEZ-MALAGA.

Circuito	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P. circuito(W
CIR-01	CALLE JUAN LISBONA ZAPATA	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	- 5	1,250
CIR-01	CALLE AL CALDE MANUEL REYNA	HALOGENUROS METALICOS	160	COLUMNA	ESFERICA GON REFLECTOR	E.D.Nivel	BIEN	15	2,400
CIR-01	CALLE ALCALDE MANUEL REYNA	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E,D.Nivel	BIEN	2	500
CIR-02	CALLE BULERIAS	VAPOR SODIO ALTA PRESION	260	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	3	760
CIR-02	CALLE ALGALDE MANUEL REYNA	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	6	1.500
CIR-02	CALLE CAMINO VIEJO DE MALAGA	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	4	1.000
CIR-03	CALLE BULERIAS	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	1	250
CIR-03	CALLE ARROYO HONDO	VAPOR SODIO ALTA PRESION	250	BACULO	ASIMETRICA CERRADA	E,D,Nivel	BIEN		1.250
CIR-03	CALLE ARROYO HONDO	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	BIEN	1	250

Fuente: elaboración propia

4.23.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-023)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

Tetal

- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 9,86 kW,
 - 🗢 que la potencia demandada por las 32 lámparas más los equipos auxiliares es de 10,5 kW,
 - que la medida en el centro de mando es de 10,5 kW,
 - que tienen maxímetro ,
 - que la discriminación horaria es con D.H.
 - que la tarifa actual es 2.0.3,
 - el factor de potencia es 0,77.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda contratar la energía en el mercado libre.
 - → Potencia óptima a contratar: Se recomienda contratar 11 kW, la realmente demandada por la instalación.
 - Discriminación horaria: la discriminación horaria que corresponde al alumbrado público será "con D.H", se recomienda permanecer tal y como se encuentra actualmente.
 - Factor de potencia: el valor registrado por el analizador de redes del coseno de phi es muy bajo, por lo que se recomienda la instalación de una batería de condensadores que corrija dicho factor. Será por tanto necesaria una de 5 KVAr por un importe de 544,04 €

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-023-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁵⁷, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Si se tiene en cuenta que todas las lámparas instaladas en el cuadro son de vapor de sodio o de halogenuro metálico, es decir, eficientes energéticamente hablando, que el reloj usado para el

334

⁵⁷ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

encendido de las mismas es astronómico (el más adecuado) y que el sistema de ahorro instalado funciona correctamente; no se proponen mejoras para este cuadro en concreto.

4.23.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 80009859900) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- **Situación futura** que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 80009859900

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	42.243,00	4.721,02	-	-	-	-	-
Estado futuro	42.243,00	4.721,02	-	-	-	-	-

Fuente: Elaboración propia.

Se estima que:

- No se alcanzan ahorros energéticos
- No se disminuyen las emisiones de CO2
- Un ahorro económico y la inversión es cero.

4.24 SUMINISTRO Nº 80168572200

4.24.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-024

Este Módulo de Medida, se encuentra en un armario en un monolito junto al centro de transformación nº 72426, en el camino de Remanente dentro del núcleo urbano de Vélez-Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 11059980 proporciona energía eléctrica a 32 luminarias distribuidas en 2 circuitos, que pertenece al CMA-024-A.

Actualmente los modos de facturación y tarifas contratadas son modo 1 con tarifa 2.0.3. (Actual 2.0.A), el contador no dispone de maxímetro pero si tiene instalado un reloj de D.H., debiendo cambiarse en breve por un contador digital, ya que el contador que presenta es de tipo analógico y no responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **35.754 kWh/año**, y un coste estimado de **5.713,01 €/año**, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,53 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-024

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-024-A

El centro de mando, se encuentra situado en un monolito junto al centro de transformación, próximo al supermercado Covirán, proporciona energía eléctrica a 32 luminarias distribuidas en 2 circuitos; existe otro circuito más pero no tiene lámparas asociadas está completamente instalado y destinado a reserva de los que están en funcionamiento.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. No dispone de toma de tierra, tiene instalado un interruptor general y una protección magnetotérmica para la maniobra. Para el encendido de las luminarias se utiliza un reloj analógico y también dispone de fotocélula.

Centro de Mando y Protección CM-024-A

En cuanto a:

- Balastos de doble nivel: el cuadro dispone de balastos de doble nivel instalados.
- **Balastos electrónicos**: no hay equipos de este tipo instalados en el cuadro.
- **Reducción**: la reducción instalada con el doble nivel es punto a punto
- **Telegestión**: no tiene instalados sistemas de control.
- Adaptaciones a normativa vigente: la compañía eléctrica procederá en breve a la instalación de un contador digital provisto de controlador de potencia.

Ficha inventario Centro de Mando y Protección CMA-024-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

ÁLAGA
DE)
le Coviran

MÓDULO DE MEDIDA

Nº de contador energia activa

11059980

Nº suministro

80168572200

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
	- 4			
	74			

	Polos/Int.				
	4PX40A				
T	0				
	0				

Marca			
SIEMENS			
-			
-			

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad			
1			
-			
- 16			

Polos/Int.				
1PX10A				
0	- 11			
0	_ II			

Marca	
SIEMENS	
÷	
- 3	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Analógico	
Si	-
Si	
Reduc. Flujo p. a p.	
01:00	
	Si Si Reduc. Flujo p, a p.

Marca
Marca
Marca
Marca
Hora fin reduc.

OTRO	
OTRO	
OTRO	
07:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
MAL	

Cableado Elem.protección

	BIEN	
7	BIEN	

Observaciones:

hay un magnetotermico de 1x16 A para proteger la fotocelula y otro de 1 x 6 A para proteger el hilo d mando del doble nivel, ambos de Siemens.

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR - 01	Alumb.Publ.	3PX250A	SIEMENS	4X25A300	HAGER	Cobre	E,B.Tubo	6	
CIR - 02	Alumb.Publ.	3PX250A	SIEMENS	4X40A300	HAGER	Cobre	E.B.Tubo	16	-
CIR - 03	Alumb.Publ.	3PX250A	SIEMENS	4X25A300	HAGER	Cobre	E.B.Tubo	16	2.

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	20.2	19.6	16.2
Reducido	11.6	10.6	9.6

TENSIONES DE FASE

LLITOIO	LODE	TOL
VRS	VST	VTR
403.7	405.8	407.7

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo columnas asimétricas cerradas.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo columnas asimétricas cerradas.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-024-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO GRIBRIDA MINICIPIODE VELEZ-MÁLAGA

Circuite	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P.circuito(W)
CIR-01	CALLE RIO (EL)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nival	-	- 4	250
CIR -01	CMNO REMANENTE (DE)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		6	1.500
CIR - 01	PROL CALLE EXPLANADA DE LA ESTACION	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		1	250
CIR -02	CMNO REMANENTE (DE)	VAPOR SODIO ALTA PRESION	260	COLUMNA	A SIMETRICA CERRADA	E.D.Nivel	- T	3	750
CIR - 02	CTRA CIRCUNVALACION A-335	VAPOR SODIO ALTA PRESION	260	COLUMNA	A SIMETRICA CERRADA	E.D.Nivel	-3-	16	4.000
CIR - 02	CTRA CIRCUNVALACION A-335	VAPOR SODIO ALTA PRESION	250	COLUMNA	A SIMETRICA GERRADA	E.D.Nivel		- 6	1.500
CIR - 02	CTRA CIRCUNVALACION A-335	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		6	1.500

Total 39 9.750

Fuente: elaboración propia

Municipio

4.24.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-024)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 9,57 kW,
 - que la potencia demandada por las 32 lámparas más los equipos auxiliares es de 11,15 kW,
 - que la medida en el centro de mando es de 8,01kW,
 - que no tienen maxímetro ,
 - que la discriminación horaria es con D.H.,
 - que la tarifa actual es 2.0.3. (2.0.A),
 - el factor de potencia es 0,82.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.0 A modo 1 dentro de la T.U.R.
 - Potencia óptima a contratar: se recomienda mantener la potencia contratada y cuando se le instale el nuevo contador digital realizar un seguimiento de la facturación para ajustar la potencia demandada.
 - Discriminación horaria: la discriminación horaria que corresponde al alumbrado público será "con D.H", por lo que se recomienda permanecer tal y como se encuentra actualmente.
 - ➡ Factor de potencia: Cuando instalen el nuevo contador digital este dispondrá de contador de energía reactiva. En este sentido se recomienda hacer un seguimiento de la facturación para detectar posibles recargos. Si estos recargos tuviesen lugar se recomienda la instalación de una batería de condensadores.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-024-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{58,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- Instalación de un reloj astronómico que controle el encendido de lámparas y el comienzo y fin de las horas de reducción.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 9,57 kW

⁵⁸ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 872 kWh al año
- Una reducción de emisiones de CO2 de 1,01 toneladas al año
- Un ahorro económico de 130,81 euros al año.

Y sería necesaria una inversión⁵⁹ de 300 euros amortizable en 2,29 años

⁵⁹ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

DATOS GENERALES

Ministrio	MVELEZMALA
Nombre	CMA-024-A
Contador	11059930
Consumo (kWh)	35.754
Coste Actual (6)	5.713,01
Coste Opt. (GEFAEM)(6)	5.713,01

Tipo	Potencia (W)	Cantidad
VAPOR SODIO ALTA PRESION	250	39
Total potencia Instalade (W)	9.7	50

MEDIDAS REALIZADAS

Tensiones de entrada (V)

With	403,70
VM	405,80
Wil	407,70

Régimen de funcionamiento

Sietema encendido	Cciula - relo
Manario de reducción	01:00
Howay accorder du	utilización /ht

Regimen nominal	1.787
Régimen requeide	2.513

Intensidades nominales (A)

31.	23,23
16	19,63
1	15,20

Precio eléctrico de referencia (6/kWh)

	GEFAEM	Ullizada
Situecion estuel	0.111G	0.15*
Situación optimiz	0.0	0.15*

intensidades reducidas (A)		
(f	11,60	
70	10.00	_

9.60

Caseno phi 1	0.92
Coseno phi 2	0.78
Coseno pri 3	0,87

^{*} Los precios tomados para el cárculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Tipo ectural	Pot Actual (M)	Tipo propurado	Pettprop (W)
VAPOR SODIO ALTA PRESION	250	VSAP> VSAP	250
Tipo notani	Pot.Actual (W)	Tipo propierato	Pot prop. (W)
VAPOR SODIO ALTA PRESION	250	VSAP> HM	250

Simulación	Pot (kVA)
RED-EST	15,00
VSAP+RED-EST	15,00

Salema encendido	Astronómico
Hors de reducción	01:00
Horas anuales de utilizad	ión propuestas
Régimen nominal	1737
Rámman meturato	2483

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAF	HM	80%	RED-EST	VSAP+RED-EST	VSAP+BON	VSAP+BE	HMHEE
Consumo(kWh)	34.882	54.882	35.763	35.397	35.397	35.763	28.331	30.602
Ahorro (kWh)	872	872	-8	367	357	-8	7,422	5.072
Coste (€)	5.582,20	6.201,73	5.714,31	5.650,96	5,580,98	5,714,31	4.591,11	5.645,81
Ahorro (€)	130,81	-598,71	-1,29	62,03	62,03	-1,29	1.121,93	67,20
Inversión (€)	300,00	3.654,00	2 983,20	5.122,80	5.122,80	2.983,20	4.590.00	9.309,00
P.Retorno (Años)	2,29			82,57	82,57		4,09	138,51

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	MSAP	HM:	BONS	RED-EST	WSAPARED-EST	VEAR+BON	USAPIBE	HIMMEE
Consumo(kWh)	34.882	34.882	35.763	35.397	35.397	35.763	28.331	30.682
Ahono (kWh)	872	872	-8	367	357	-8	7.422	5,072
Coste (€)	5.582,20	6.301,73	5.714,31	5.650,98	5.650,98	5.714,31	4.591,11	5.645,81
Ahorro (€)	130,81	-538,71	-1,29	62,03	62,03	-1,29	1.121,90	67,20
Inversión (€)	300,00	3.654,00	2 983,20	5.122,80	5.122,80	2.983,20	4.590,00	9.309,00
P.Retorno (Años)	2,29		-	82,67	82,67		4.09	138,51

VSAP: Sustitución de lamparas Vapor de Socio Alts Presión
HM, Sustitución de lamparas Halogeraura metálicus
BEN: Incorparación de balastes afactemagnéticos de dobta rivel
RED-EST: Incorparación de cum recuedor-catabilizador de tersion
BE: Incorparación de coloscos efectionicos
La medida con mayor abono energetico para un pas de 100 anos se las resultado en color saranja
Nota 1: No se te los do en cuenta en las optimizaciones posibles inversiones acacidade a cambio de fuminarias, ni modificación de las lineas.
Nota 2: Inversión asociaca a cambio de sistema de encendido incluida en las optimizaciones.

4.24.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 80168572200) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 80168572200

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	35.754,00	5.713,01	-	-	-	-	-
Estado futuro	34.882,00	5.582,20	300,00	872,00	1,01	130,81	2,29

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 872 kWh al año
- Una reducción de emisiones de CO2 de 1,01 toneladas al año
- Un ahorro económico de 130,81 euros al año.

Y sería necesaria una inversión⁶⁰ de 300 euros amortizable en 2,29 años

60 No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.25 SUMINISTRO Nº 2359855800

4.25.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-025

Este Módulo de Medida, se encuentra en el Paseo de Andalucía dentro del núcleo urbano de Vélez Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87672018, proporciona energía eléctrica a 39 luminarias distribuidas en 4 circuitos, que pertenece al CMA-025-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 2.0.3., el contador dispone de maxímetro y de reloj de DH.

Este suministro presenta un consumo medio en los últimos años de **35.907 kWh.** El coste actual estimado con las tarifas vigentes, es de **4.378,04 €** y respecto al cómputo general del consumo de alumbrado público representa el 0,53 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-025-A

El centro de mando, se encuentra situado junto al módulo de medida en el Paseo Andalucía dentro del núcleo urbano, proporciona energía eléctrica a 39 luminarias distribuidas en 4 circuitos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, tierra, cableado y los elementos de protección. Dispone para la protección general del cuadro de un interruptor general y su protección diferencial correspondiente; además para la maniobra del cuadro tiene instalado una protección diferencial. Para el encendido de las luminarias utiliza un reloj astronómico y dispone además de balastos de doble nivel conectados para realizar reducción a partir de la 1:00 a.m.

Centro de Mando y Protección CM-025-A

En cuanto a:

- Balastos de doble nivel: todos los balastos instalados en el cuadro son de doble nivel
- **Balastos electrónicos**: no tiene instalados equipos de este tipo.
- Reducción en cabecera: la reducción instalada en este cuadro es punto a punto
- **Telegestión**: no existen dispositivos de control en el cuadro.
- Adaptaciones a normativa vigente: el cuadro debe disponer de protecciones contra las sobretensiones de red.

Ficha inventario Centro de Mando y Protección CMA-025-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CM A-025-A	
MUNICIPIO DE VELEZ-MÁLAGA	
PASEO ANDALUCIA (DE)	
MOLOLITO JUNTO A LA CAFETERIA GALAXIA	
	MUNICIPIO DE VELEZ-MÁLAGA PASEO ANDALUCIA (DE)

MÓDULO DE MEDIDA

Nº de contador energía activa

7	87672018	

Nº suministro

2359855800

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
	1			
	×			
	-			

٦.	Polos/Int.		
	4PX50A		
	0		
J.	0	Ť	

	Marca	
	HAGER	
		11
11-	-	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad	
- T	
9,	
2	

Polos/Int.		
1PX5A		
0		
0		

	Marca	
-	ABB	
	-	
	-	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

А		
	Astronómico	F,
	Na	
	Si	
	Reduc. Flujo p. a p.	Ĭ,
	01;00	Ä

	Marca
	Marca
	Marca
	Marca
Hon	a fin reduc.

	ORBIS	ΤЦ
li I		
11	ABB	
	-	
+1.3	08:00	3.5

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

	BIEN	
ti =	MAL	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dif	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR-01	Alumb.Publ.	3PX25A	GE	0	9	Cobre	E.B.Tubo	6	-
CIR-02	Alumb Publ	3PX25A	GE	0		Cobre	E.B.Tubo	6	3- 1
CIR-03	Alumb, Publ.	2PX25A	GE	0	-04	Cobre	E.B.Tubo	В	
CIR-04	Alumb.Publ.	3PX25A	GE	0		Cobre	E.B.Tuba	10	361

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	17.9	16.8	13.8
Reducido	15.9	14.1	13

TENSIONES DE EASE

VRS	VST	VTR
397.8	393.6	397 8

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Halogenuro Metálico por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas del tipo columna farol con difusor.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Halogenuro Metálico por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas del tipo columna farol con difusor.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

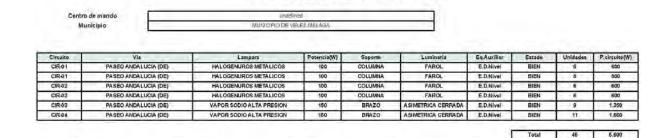
- Lámparas: el 100 % son de Vapor de sodio por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 4

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de sodio por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo báculo asimétrico cerrado.



Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-025-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Fuente: elaboración propia

4.25.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-025)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - iene una potencia contratada de 6,09 kW,
 - oque la potencia demandada por las 39 lámparas más los equipos auxiliares es de 7,4 kW,
 - que la medida en el centro de mando es de 9,13 kW,
 - que tienen maxímetro ,
 - que la discriminación horaria es con D.H.
 - que la tarifa actual es 2.0.3.
 - el factor de potencia es 0,83.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.0 A dentro de la T.U.R.
 - Potencia óptima a contratar: Se recomienda contratar 10 kW dentro de la T.U.R.
 - Discriminación horaria: la discriminación horaria que corresponde al alumbrado público será "con D.H", se recomienda permanecer tal y como se encuentra actualmente.
 - ⇒ Factor de potencia: se recomienda instalar una batería de condensadores ya que el factor de potencia es algo bajo. Para este caso se necesitaría una batería de condensadores de 3 KVAr con un coste de 544,83 €

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-025-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando no se recomiendan medidas para conseguir ahorro energético ya que el cuadro actualmente se encuentra normalizado conforme a la eficiencia energética. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁶¹, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor, y todo ello se ha comprobado que no se pueden obtener más ahorros.

En este caso existen lámparas de halogenuros metálicos, sobre las que no se propone ningún tipo de sustitución ya que su utilidad es ornamental.

⁶¹ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

4.25.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 2359855800) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales y batería de condensadores.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro № 2359855800

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	35.907,00	4.378,04	544,83	-	-	-	-
Estado futuro	35.907,00	4.378,04	-	-	-	-	-

Fuente: Elaboración propia.

Se estima que:

- No se alcanzan ahorros energéticos
- No se disminuyen las emisiones de CO2
- Un ahorro económico y la inversión es cero.

4.26 SUMINISTRO Nº 2359859100

4.26.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-026

Este Módulo de Medida, se encuentra en la C/ del río, frente a la Clínica del Carmen. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 2113373, proporciona energía eléctrica a 44 luminarias distribuidas en 3 circuitos, que pertenece al CMA-026-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 3.0.2 (actual 3.0.A) el contador dispone de maxímetro y reloj de DH.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 29.183 kWh/año, y un coste estimado de 4.729,75 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,43 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-026

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-026-A

El centro de mando, se encuentra situado frente a la Clínica Carmen, en la C/ Del río, proporciona energía eléctrica a 44 luminarias distribuidas en 3 circuitos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. La toma de tierra está en mal estado. Dispone de interruptor general y de protección magnetotérmica para la maniobra. En el encendido de las luminarias se utiliza un reloj analógico y una fotocélula.

Centro de Mando y Protección CM-026-A

En cuanto a:

- Balastos de doble nivel: no hay instalados balastos de este tipo en el cuadro.
- Balastos electrónicos: no hay instalados.
- **Reducción punto** a **punto**: no existen ningún tipo de reducción instalada.
- Telegestión: no existen sistemas de control instalados.
- Adaptaciones a normativa vigente: Deben disponer todos los circuitos de protecciones diferenciales.

Ficha inventario Centro de Mando y Protección CMA-026-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

 Nombre
 CMA-026-A

 Município
 MUNICIPIO DE VELEZ-MÁLAGA

 Via
 CALLE RIO (EL)

 Localización
 --

MÓDULO DE MEDIDA

N° de contador energía activa 2113373 N° suministro 2359859100

PROTECCIÓN GENERAL

 Cantidad
 Polos/Int.
 Marca

 Interruptor general
 1
 4PX63A
 ABB

 P.magnetotérmica
 0

 P.Diferencial
 0

PROTECCIÓN DE MANIOBRA

 Cantidad
 Polos/Int.
 Marca

 P.Magnetotérmica
 1
 1PX15A
 ABB

 P.diferencial
 0

 Contactores/Relés
 1
 3PX125A
 ABB

ELEMENTOS DE MANIOBRA

Tipo reloj Analógico
Célula fot. Si
Interruptor manual Si
Tipo sistema de ahorro No tiene
Hora inicio reduc.

Marca THEBEN
Marca ORBIS
Marca ABB
Marca Hora fin reduc.

ESTADO DEL CUADRO

 Armario
 BIEN
 Cableado

 Tierra
 MAL
 Elem.protección

REGULAR MAL

Observaciones:

CIRCUITOS DE SALIDA

Circuito	Tipo	P Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-001	Alumb.Publ.	2PX32A	UNELEC	0 -		Cobre	E.B.Tubo	4	RIT
CIR-002	Alumb.Publ	1PX25A	HAGER	0		Cobre	E.B.Tubo	4	
CIR-003	Alumb Publ.	1PX16A	HAGER	0	0.00	Cobre	E.B.Tubo	6	- 92

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	10.4	18.1	13.5
Reducido	10.4	18.1	13.5

TENSIONES DE FASE

VRS	VST	VTR
407.1	408.6	407.1

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 66 % son de Vapor de Sodio, y el 34% son de Vapor de Mercurio por lo que existe un grupo que no son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas del tipo báculo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 2

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo brazo farol.

Fuente: Elaboración propia

Circuito 3

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son de tipo brazo farol el 65 % y el resto son del tipo brazo asimétrico cerrado.

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-026-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

entro de mando	undefinen	
Municipio	MUNICIPIO DE VELEZ-MALÁGA	

Circuito	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P. circuito(W)
CIR-001	CALLE ALMAZARA	VAPOR MERCURIO	126	BRAZO	ASIMETRICA ABIERTA	Bectromag.	BIEN		125
CIR-001	CALLE ALMAZARA	VAPOR SODIO ALTA PRESION	150	BRAZO	ASIMETRICA CERRADA	Bectromag.	BIEN	1	150
CIR-001	CALLE RIO (EL)	VAPOR SODIO ALTA PRESION	160	BRAZO	ASIMETRICA CERRADA	Electromag.	BIEN	7	1.050
CIR-001	PLAZA REYES CATOLIGOS	VAPOR SOOIO ALTA PRESION	150	BRAZO	FAROL	Bectromag.	BIEN	- 1	150
CIR-001	CALLE PID AUGUSTO VERDU	VAPOR MERCURIO	125	BRAZO	A SIMETRICA A BIERTA	Bectromag.	BIEN	2	250
CIR-001	CALLE PIO AUGUSTO VERDU	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Electromag.	BIEN	4	600
CIR-001	CALLE ANTONIO SEGOVIA LOBILLO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Bectromag.	BIEN	2	300
CIR-002	CALLE CASIMIRO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Electromag.	BIEN	3	450
CIR-002	CALLE SAN CRISTOBAL	VAPOR SODIO ALTA PRESION	960	BRAZO	FAROL	Bectromag.	BIEN	4	600
CIR-002	CLLON SAN CRISTOBAL	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Bectromag.	BIEN	1.0	150
CIR-002	CALLE MARIA ZAMERANO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Electromag.	BIEN	2	300
CIR-002	CALLE MOLING DE CRISTO	VAPOR SCOIO ALTA PRESION	150	BRAZO	FARGL	Electromag.	BIEN	2	300
CIR-002	CALLE MOLINO DE VIENTO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Bectromag.	BIEN	2	300
CIR-003	CALLE ALMAZARA	VAPOR SODIO ALTA PRESION	150	BRAZO	ASIMETRICA CERRADA	Electromag.	BIEN	3	450
CIR-003	CALLE RIO (EL)	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Bectromag.	BIEN	7	1.050
CIR-003	CALLE RID (EL)	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	Bactromag	MAL	2	300

Fuente: elaboración propia

4.26.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-026)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.

- Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 22,84kW,
 - que la potencia demandada por las 44 lámparas más los equipos auxiliares es de 7,5 kW,
 - que la medida en el/los centro/s de mando es de 6,4 kW,
 - que sí tienen maxímetro ,
 - que la discriminación horaria "3P",
 - que la tarifa actual es 3.0A,
 - el factor de potencia es 0,66.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda contratar la energía dentro de la tarifa T.U.R. ya que se demanda menos de 10 kW, o con una comercializadora de mercado libre.
 - Potencia óptima a contratar: Se recomienda contratar 9 kW de potencia, suficiente para hacer frente a la demanda.
 - Discriminación horaria: Se recomienda contratar la discriminación horaria "Con D.H".
 - Factor de potencia: es de 0,66, por lo que es muy recomendable implementar una batería de condensadores de 7,5 kVar con una inversión de 304,5 €

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-026-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁶², desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

⁶² Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

- La sustitución de 3 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión 70 W.
- Instalación de 3 balastos electrónicos para lámparas de vapor de sodio de 70W
- Instalación de 41 balastos electrónicos para lámparas de vapor de sodio de 150 W
- Instalación de un reloj astronómico programado para el encendido de luminarias y para la reducción de las mismas a la 1:00 a.m.
- Sustitución /Adecuación de luminarias que se encuentran en mal estado.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 12 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 12.413 kWh al año
- Una reducción de emisiones de CO2 de 14,43 toneladas al año
- Un ahorro económico de 1.855,98 euros al año.

Y sería necesaria una inversión⁶³ de 4.330,26 euros amortizable en 2,33 años

⁶³ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipio	MVELEZMALA
Nombre	CMA-028-A
Contagor	2118373
Consumo (kWh)	29,183
Coste Actual (C)	4.729.75
Coste Opt. (GEFAEMI(C)	4.729.75

Tipo	Potencia (W)	Cantidad
VAPOR MERCURIO	125)
VA POR SODIO ALTA PRESION	150	×1
Total potencia instalada (W)	n doc	

MEDIDAS REALIZADAS

Tensiones de entrada (V)

We	107/1C
Walc	408,50
NW.	437/1C

Régimen de funcionamiento

Sistema encetiliab	Orlula Erac,
tosare de reducción.	100
Horas anuales de	utilización (h)

BODIES MY SIL	×.000
r samen reducido	3

Int	tensidades nominales (A)
- 15	C 10
4	8.0

Precio eléctrico de referencia (E/kWh)

100000000000000000000000000000000000000	GEFAENT	AD-LIEN
Scure in educal	0,430	1.74
ditación apelles	33	T. 6

Internida	ides reducidas (A)
2 4	C 10
16	8.1
2	2.60

Coseno phi

Coseno phi (196)

Coseno phi (196)

Coseno phi (196)

SIMULACIONES REALIZADAS

Sustitución de lamparas

/ (pa estual	Frot Attuel (M)	Tipo propiless	Ecopyop (W)
VAPOR MERCURIO	750	VM - 2 VS5A-1	71.
VAPOR SODIO ALTA PRESIDN	2:17	Michael Michael	59,11
Type steller	Det Attuet (M)	Tipo prospessio	150 per 1500
VAPOR MERCURIO	25	VH > IH	70
VAPOR SODIO ALTA PRESION	.00	VOLUME - V	194

Incorporación RED-EST

Smillación	Fat (IIVA)
REGENT	15.EU
V64F4412-6	1911

Regimen de funcionamiento propuesto Se fonce manganta Astronomia

TEMPORE INCHES	535.57
Horas anuales de utilizaçi	on propuestas
declarer rooming	1707
-Piguline (reading %)	2/160

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VEAP	1988	BON	RED-EST	VGAP*RED-EST	VSAP+BON	VIGAREBE	HM+BE
Consumo(kWh)	27.783	27.783	21.914	23,082	20.952	21.266	16.770	18.151
Ahorro (kWh)	1.399	1,399	7.288	6.100	8.230	7.916	12.413	11.021
Coste (C)	4.537.03	5,526,96	3,639,39	3.803.91	3,501,13	3,559,43	2,873.76	4,042,36
Ahorro (6)	192,72	-797,22	1.090,35	925,83	1.228,81	1.170,32	1,855,98	687,38
Inversión (C)	473,76	4.222.81	2.811.64	5.122,80	6.296.56	2.944.75	4.220,25	10.562,81
P.Retomo (Años)	2,45	-	-5,29	6,63	4,31	2,51	2.33	15.35

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	100	BON	REDEST	VSAPHRED-EST	VSQP4EDN	VSAP+BE	ION+BE
Consumo(kWh)	27.783	27.763	21,814	23,082	20,952	21,268	18.770	18,181
	1,399	1,799	7.269	6.100	8.230	7.916	12:413	11.021
Ahorro (k/Vh)	4.637.03	5.626.98	3.639:39	3.003.91	3,601,13	3.669.43	2373.76	4.042.36
Goste (C)	CONTRACTOR OF STREET	- (2000)		CARLOT SERVICE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.170.32		687.38
Ahorro (C)	192,72	-797.22	1,080,35	925,83	1.228.81		1,055,96	
Inversión (6)	473,76	4,222,81	2,811,54	5.122,80	6.296.56	2.944.75	4.330.26	10,562.81
P.Retomo (Años)	2,46	-	2.57	6,63	4,31	2.51	2,33	16.36

[&]quot; Los precios temados para el cálculo han sido introducidos por el usuario.

4.26.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 2359859100) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 2359859100

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	29.183,00	4.729,75	304,50	-	-	-	-
Estado futuro	16.770,00	2.874,75	4.330,26	12.413,00	14,43	1.855,00	2,33

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 12.413,26 kWh al año
- Una reducción de emisiones de CO2 de 14,43 toneladas al año
- Un ahorro económico de 1.855euros al año.

Y sería necesaria una inversión⁶⁴ de 4.330,26 euros amortizable en 2,33 años.

64 No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.27 SUMINISTRO Nº 2359853100

4.27.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-027

Este Módulo de Medida, se encuentra situado en la C/ Enrique Atencia Portillo. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 11059901, proporciona energía eléctrica a 63 luminarias distribuidas en 5 circuitos y a unos contenedores subterráneos, que pertenece al CMA-027-A.

Actualmente los modos de facturación y tarifas contratadas son modo 1 con tarifa 2.0.3 (actual 2.0A), el contador no dispone de maxímetro, pero si tiene conectado reloj de DH, debiendo cambiarse en breve por un contador digital, ya que el contador que presenta es de tipo analógico y no responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **84.040 kWh/año**, y un coste estimado de **13.213,78 €/año**, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de **1,25** %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-027

Fuente: Agencia Andaluza de la Energía y elaboración propia


B) CENTRO DE MANDO CMA-027-A

El centro de mando, se encuentra situado encima del módulo de medida, en un armario de pared en la C/ Enrique Atencia Portillo; proporciona energía eléctrica a 67 luminarias distribuidas en 5 circuitos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. Por otro lado, la toma de tierra es inexistente por lo que sería necesaria su instalación. Dispone de interruptor general y protección diferencial general, reloj analógico y fotocélula para el encendido de las lámparas

Centro de Mando y Protección CM-027-A

En cuanto a:

- **Balastos de doble nivel**: Las lámparas del cuadro disponen de este tipo de equipos.
- **Balastos electrónicos**: No existen equipos de este tipo.
- **Reducción en cabecera**: No existe ningún equipo que produzca reducción en cabecera.
- **Telegestión**: No hay instalado sistemas de control y seguimiento.
- Adaptaciones a normativa vigente: Colocación de la toma de tierra. Todos los circuitos deben disponer de protecciones diferenciales instaladas.

Ficha inventario Centro de Mando y Protección CMA-027-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CM A-027-A	
MUNICIPIO DE VELEZ-MÁLAGA	
CALLE IMAGINERO DIEGO SANCHEZ	
FACHADA ESTADIO VIVAR TELLEZ	

MÓDULO DE MEDIDA

Nº de contador energía activa

	11059901	
--	----------	--

Nº suministro

2359853100	
2308003100	

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
	1			
	1			
1	100			

	Polos/Int.	
Ĺ	4PX63A	
ĵ.	0	٦
7.7	0	

Marca	
GENERAL ELECT	RIC
ABB	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

	Cantidad			
	1			
	- 0			
7	3			

Polos/Int.	
1PX6A	
0	
3PX100A	

	Marca	
	UNELEC	- 1
11:		
	ABB	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

11		-
	Analógico	Ĭ
T	Si	
Ŧ	Si	
Ē	Reduc. Flujo p. a p.	H
÷	01:00	

Marca Marca Marca Marca Hora fin reduc.

	ORBIS	
ME	RLIN GERIN	4
	-9	
	08:00	

ESTADO DEL CUADRO

Armario Tierra

	BIEN	
11	MAL	

Cableado Elem.protección

BIEN	
MAL	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección	Long.linea (m
						B-20-00-00-00-00-00-00-00-00-00-00-00-00-		(mm2)	
CIR-01	Alumb.Publ.	3PX25A	HAGER	0	2	Cobre	E.B.Tube	6	-
CIR-02	Alumb Publ	2PX20A	HAGER	0		Cobre	E.B.Tubo	10	7-10
CIR-03	Alumb Publ.	3PX20A	HAGER	Ü	-	Cobre	E.B.Tubo	10	
CIR-04	Alumb Publ.	3PX20A	MEDEX	0		Cobre	E.B.Tubo	10	-
CIR-05	Alumb Publ	4PX20A	T	0	-3-4	Cobre	E.B.Tubo	6	

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	42	33.2	32.5
Reducido	36.2	29.9	28.8

TENSIONES DE FASE

	TO DE	7,00
VRS	VST	VTR
395,8	398.1	396.2

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 100 % son del tipo columna farol dobles.

Fuente: Elaboración propia

Circuito 2

- **Lámparas**: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 26,92 % son de tipo brazo asimétrico cerrado y el 73,08 % son columna asimétrica cerrada.

Fuente: Elaboración propia

Circuito 3

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: el 40,9 % son del tipo báculo asimétrico cerrado, el 54,54 % son del tipo columna asimétrica cerrada, y el 4,55 % son del tipo Brazo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 4

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 88 % son del tipo brazo asimétrico cerrado.

Fuente: Elaboración propia

Circuito 5

El circuito 5 se utiliza para los motores de unos contenedores que se encuentran próximos al cuadro.

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-027-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO Dentre de mando Mantopao SHACOTA MUNICIPIO DE VIDENA ASA

Steulto	Uts .	Lasgera	Potencia(N)	Soports	Lurisons	Sc. Aucklar	Estado	Unicadas.	Publiculto V
Lak-m	CALLE BOTO MERO DE 60 SENCREZ	ANACHORES NELVA ARROWN	260	CCLIMAN	HMd:I	is to short	HES		1943
CROL	CALLE INVENERO DI SOCIAMO DE	VAPOR PODIO ALTA PRETICA	290	CCLUMMA	PRINCIL	ED Wild	1044		1,003
CRO	CALLE TRUPOA	VAPOS ROCKS ALTA PRIMICE	260	CULTMAN	ARMSTROM CARRADO	B.D.WAI	RES	2	\$20
CRUIT	COLLEGIAL MEANIN	VARDA ROCKS ALTA PRESION	280	CCCOMMA	ASSETTACA CERNADA	E.O. West	RES	201	7,353
Cm-m	CA.LECLANA GAMPDANOR	VAPOR SDOID ALTA PRESION	250	COLUMNA	ASMETYCA CERYADA	ED/Wyel	HEN	3	750
C#6-01	PLAZA REYES CATCUGOS	VAPOR SOCIO ALTA PRESION	250	CCLUMBA	SEMETRICA CERRADA	E0.Wed	661	3	790
CIT-00	PSAJE P NTORES HNOS CLAVERO	VAPOR GODIO ALTA PROSICIO	150	CRAZO	AGMETRICA GERRADA	E.D. Wirel	DEV	2	500
CR-02	CALLE IMAGHERO DIEGO SANCHEZ	VAPOR GOOD ALTA PRESION	100	GRA20	ACASTRO ADSTRACA	E.0.16/el	DEV	1	153
CR-02	CALLES PINTON ANTONIO DE VIBLEZ	VAPOR SODIO ALTA PRESION	550	BRAIC	ASMET YOUR CARRAGE	E.C. Street	0.00	2.	350
CH-III	CALLS PINTORES HERMANDS CLAVERGE	VAPOR SQUAD ALTA PROSPER	590	BRAZO	ASSETS SCA CIRCADA	805.Weel	REV	1	150
CRO	CALLS PAYOREE HEMANAGE CLAVERO	VARIOR ROCKS ALTA PRESIDE	260	BRAZE	ANNAFFSICA CSB SATIA	B.D. Send	REG	2	F60
CRAS	CA (FAXAROLIA	TAPOR SOLED ALTA PRESSES	290	840000	CAMPLACA CARACTA	F.D.Wel	BEG.	1	1,003
CR-8	CALLE IMAGINERO DIEGO SANCHEZ	VAPOR BOOKS ALTA PRESION	250	BATULD	AZIMET OCA GENRADA	E.D. W/dl	BEN	1	160
CB-08	SALLE IMAGHENO DONNINGO BANCHEZ	VAPOR BOOK ALTA PRESIDE	250	SAGULG	ASMETRICA GERRADA	E.D. Wrot	664	4	1.000
CB/M	CALLE TEJEDA	VAROR SOME ALTA PRESIDE	250	84000	CEMETRICA CERRATIA	ED WW	1.0		1.630
CROL	CALLE TEJECA	TAPOR SOLID ALTA PRESAN	250	CCCUMMA	ASMET WAS CENTADA	BD Wel	ees	Y	/50
CR-N	CALLE TELECA	VAPON SODIO ALTA PRESION	280	CCLUMMA	SEMETRICA GERMADA	E.D. World	662	1	797
CR.M.	DALLE HUBATO CARRION	VAPOR ROCKS ALTA PRESION	250	BRAZO .	ASMETRICA CERRADA	E.D. 9441	100		1,003
CIR-04	DALLE HLEPSO CARRON	VAPOR SOCIO ALTA PRESION.	250	BACULD	ASIMETRICA CERRADA	E.D. Wed	(4)	1	250
CIR-04	CALLE HLEFTG CKAR DH	WARDS SOOKS ALTA PRESION	250	CCLUMMA	ASIMETRICA GERRADA	E.D. West	EEN	1 2	2,250
Oliver.	CALLE IMAGINERO DIEGO SANOVEZ	VAPOR SOCIO ALTA PRESION	250	CRAZG	ASSECTRICA OCRRADA	E0.Well	0.00	1	622

Fuente: elaboración propia

4.27.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-027)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.

- Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
- Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
- Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

"Estado actual". En resumen este suministro:

- tiene una potencia contratada de 9,13 kW,
- oque la potencia demandada por las 75 lámparas más los equipos auxiliares es de 20,87 kW,
- que la medida en el centro de mando es de 20,36 kW,
- que no tienen maxímetro ,
- que la discriminación horaria es con D.H.,
- que la tarifa actual es 2.0.3(actual 2.0.A)
- el factor de potencia es 0,83
- Se estima que las penalizaciones por el maxímetro ascenderán a 864,51 €
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: se recomienda seguir en la T.U.R hasta que instalen el nuevo contador con maxímetro
 - Potencia óptima a contratar: Cuando se instale el nuevo contador habrá que contratar 20,78 kW, siendo la tarifa la 3.0A
 - Discriminación horaria: tratándose de una tarifa 3.0.A la discriminación horaria correspondiente será la "3P" de tres periodos.
 - Factor de potencia: el factor de potencia medido es 0,83 por lo que es conveniente instalar una batería de condensadores de 10 kVAr que conseguirán ahorrar como término medio 390,66 € con una inversión de 579,03 € y un periodo de retorno de 1,48 años.
 - Ejecución de proyectos: será necesario por tanto la realización de un proyecto para la contratación de esta potencia recomendada, el importe del mismo será de 1.500 € y su ejecución estará en torno a los 75.000 €. En el Anexo II Justificación de Inversiones se detallan las inversiones a realizar para este tipo de proyectos, no obstante son totalmente estimativas ya que dependen del estado particular de cada instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-027-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro

energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁶⁵, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- Instalación de un reloj astronómico que ajuste las horas de encendido y apagado, ya que el cuadro por lo demás se encuentra en perfectas condiciones desde el punto de vista de la eficiencia energética.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación, donde se obtiene una nueva recomendación para la contratación de la potencia del cuadro.
 - Potencia recomendada: 20 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 1.975 kWh al año
- Una reducción de emisiones de CO2 de 2,30 toneladas al año
- Un ahorro económico de 296,32 euros al año.

Y sería necesaria una inversión⁶⁶ de 300 euros amortizable en 1,01 años.

A modo orientativo se expone a continuación la simulación realizada con el programa de gestión de cuadros SICAP.

⁶⁶ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

⁶⁵ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipio	MVELEZMALA
Nombro	CMA-027-A
Contador	11059901
Consumo (kWh)	84.040
Coste Actual (€)	13.213,78
Coste Opt. (GEFAEM)(C)	13.213,78

2.513

Tipo	Potencia (VV)	Cantidad
VAPOR SODIO ALTA PRESION	150	6
VAPOR SODIO ALTA PRESION	250	69
Total potencia instalada (W)	18.1	50

MEDIDAS REALIZADAS

Tensiones de entrada (V)

Vrs.	395,80
Val	398,10
WI	386,20

Régimen de funcionamiento

Sistema encendido	Celula reloj
Horano de reducolón	01:00
Horas anuales de	utilización (h)
Regimen nominal	1.787

meero	sidades nominales (A)
16	42.00
150	99.00

Precio eléctrico de referencia (E/KWh)
--

		- A-money
	GEFAEM	Utilizado
Situación actual	0.0723	0.15*
Situaisinn optimiz	0.0	0.15*

intensidades reducidas (A)	
-11	36,20
ls:	29,90
II	28,80

Coseno phi

Coseno phi 1	0.78
Caseno phi 2	0.85
Casond phi 3	0.84

^{*} Los précios tomados para el cálculo han sido introducidos por el usuario

32.50

SIMULACIONES REALIZADAS

Sustitución de lámbaras

Tigos autual	Pot Actual (W)	Tipo propuesto	Pot prop. (VI)
VAPOR SODIO ALTA PRESION	150	VSAP VSAP	150
VAPOR SODIO ALTA PRESION	250	VSAP> VSAP	250
Tipo actual	Pot Actual (W)	Tipo propilesto	Pot prop (VI)
VAPOR SODIO ALTA PRESION	150	VSAP -> HM	150
VAPOR SODIO ALTA PRESION	250	VSAP -> HM	250

Incorporación RED-EST

Simulación	Pot (kV)
RED-EST	30,00
VSAP-RED-EST	30,00

Sistema encendido	Astronómico
Hora de redusción	C1:00

Horas anuales de utilización propuestas

Régimen nominal	1737
Regimen reducido	2463

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	SDN	RED-EST	VSAR+RED-EST	VSAP+BON	VSAP+BE	HIMBE
Consumo(kWh)	82.065	82.065	67.521	68.352	68,352	67.521	54.703	58.247
Ahorro (kWh)	1.975	1.975	16.519	15.688	15.688	16.519	29.332	24 793
Coste (€)	12.917,45	14.196,03	10.781,18	10.905,89	10.905,89	10.781,18	8,859,28	10,914,18
Aherro (€)	296,32	-982,24	2.432,69	2.307,88	2.307,88	2,432,69	4.354,49	2.289,60
Inversión (€)	300,00	6.774,66	5.398,80	6.853,60	5.853,60	5.398,80	8,430,00	17.643,66
P.Retorno (Años)	1,01		-6,89	2,53	2,53	2,21	1,93	7,67

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	140/1	BON	RED-EST	VSAP+RED-EST	VSAP+BON	VSAPHEE	HIMBE
Consumo(kWh)	82.065	82.066	67.621	68,352	68.362	67.521	54.708	58.247
Ahorro (kWh)	1.975	1.976	16.519	16.688	15.688	16.519	29,332	24.793
Coste (€)	12.917,45	14.196,03	10.781,18	10.905,89	10,905,89	10.781,18	8.859.28	10.914,18
Aherro (€)	296,32	-982,24	2.432,59	2.307,88	2.307,88	2432.59	4 354 49	2 299,60
Inversión (€)	300,00	6.774,66	6.396,80	6.863,60	6.863,60	5.398,80	8,430,00	17.643,66
P.Retorno (Años)	1,01		2.21	2.53	2,53	2,21	1,93	7,67

4.27.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 2359853100) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 2359853100

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	84.040,00	13.213,78	579,03	-	-	-	-
Estado futuro	82.065,00	12.917,46	300,00	1.975,00	2,30	296,32	1,01

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 1.975 kWh al año
- Una reducción de emisiones de CO2 de 2,30 toneladas al año
- Un ahorro económico de 296,32 euros al año.

Y sería necesaria una inversión⁶⁷ de 300 euros amortizable en 1,01 años.

⁶⁷ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.28 SUMINISTRO Nº 80196358700

4.28.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-028

Este Módulo de Medida, se encuentra situado en la C/ Francisco Labado Gómez, junto al centro de transformación CT 62693. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 1164415, proporciona energía eléctrica a 111 luminarias distribuidas en 5 circuitos pertenecientes al CMA-028-A.

Actualmente los modos de facturación y tarifas contratadas son modo 1 con tarifa 2.0.2 (actual 2.0A), el contador no dispone de maxímetro, pero si tiene conectado reloj de DH, debiendo cambiarse en breve por un contador digital, ya que el contador que presenta es de tipo analógico y no responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 87.484 kWh/año, y un coste estimado de 14.106,14 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 1,3 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-028

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-028-A

El centro de mando, se encuentra situado debajo del módulo de medida, en un armario de pared en la C/Fº Labado Gómez; proporciona energía eléctrica a 111 luminarias distribuidas en 5 circuitos.

El cuadro en cuestión, se encuentra en buenas condiciones de forma general, ya que los dispositivos de protección, magnetotérmicos, y relé diferencial se encuentran presente en el mismo. El cableado no obstante tiene algunas deficiencias, como es que algunos de los cables se encuentran quemados por lo que se recomienda su sustitución. Por otro lado la toma de tierra también se encuentra presente y en buen estado.

El cuadro dispone de reloj para el encendido de las lámparas, y un contactor que se utiliza para realizar maniobras.

En cuestión de protecciones sería necesario instalar un diferencial por circuito.

Centro de Mando y Protección CM-028-A

En cuanto a:

- Balastos de doble nivel: Todas las lámparas del cuadro disponen de estos equipos.
- **Balastos electrónicos**: No existen equipos de este tipo.
- **Reducción en cabecera**: No existe ningún equipo que produzca reducción en cabecera.
- **Telegestión**: No hay instalado sistemas de control y seguimiento.
- Adaptaciones a normativa vigente: Sustitución del cableado que se encuentra quemado. Instalación de un diferencial por circuito.

Ficha inventario Centro de Mando y Protección CMA-028-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-028-A	
MUNICIPIO DE VELEZ-MÁLAGA	
CALLE FCO LABAO GOMEZ	
Junto ACT 62693	

MÓDULO DE MEDIDA

Nº de contador energia activa

4104115	
1164415	

Nº suministro

80196358700

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad			
	1(1)		
	1.0		
	- 1		

Polos/Int.			
4PX63A			
0			
0			
	0		

Marca	
 HAGER	
7	
OTRO	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Polos/Int.	
1PX10A	
0	
1PX50A	17
	_

Marca	
HAGER	
F.	
OTRO	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Analógico	ıf
No	
No	
Reduc. Flujo p. a p.	
01:00	7
	No No Reduc, Flujo p. a p.

Marca Marca Marca Marca Hora fin reduc.

-	ORBIS)
	7-7-	- 1
	- 140	
	- 5	
	07:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

MAL	
MAL	

Hay varios cables con quemaduras y un elemento de protección quemado

CIRCUITOS DE SALIDA

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR 1	Alumb.Publ.	3PX25A	HAGER	0	r+2	Cobre	E.B.Tubo	6	
CIR 2	Alumb.Publ.	3PX32A	HAGER	0	1-0	Cobre	E.B.Tubo	10	
CIR 3	Alumb.Publ.	3PX32A	HAGER	0		Cobre	E.B.Tubo	10	S Longran
CIR 4	Alumb.Publ.	3PX32A	HAGER	0		Cobre	E.B.Tubo	10	I Dyell
CIR 5	Alumb.Publ.	3PX25A	OTRO	0	197	Cobre	E.B.Tubo	10	9 - 60 70

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	41.2	36.1	44.3
Reducido	24.72	21.66	26.58

TENSIONES DE FASE

	LINOIOI	ALO DE I	HOL
Γ	VRS	VST	VTR
ľ	390.6	392.2	393.8

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 90 % son de columna asimétrica cerrada mientras que el 10 % es columna esférica.

Fuente: Elaboración propia

Circuito 2

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 78,26 % son de tipo Columna asimétrica cerrada y el 24,74 % son columnas esféricas.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

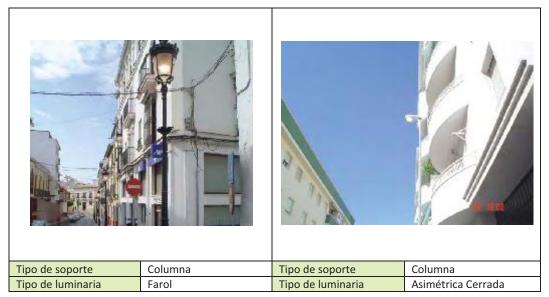
- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 100% son del tipo columna asimétrica cerrada.

Fuente: Elaboración propia

Circuito 4

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: el 65,21 % son de tipo Columna asimétrica cerrada y el 34,79 % son columnas esféricas.



Fuente: Elaboración propia

Circuito 5

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: el 80,76 % son de tipo columna farol y el 19,24 % son columnas asimétricas cerradas.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-028-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO CMA-028-A MUNICIPIO DE VELEZ-MÁLAGA

Circuita	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxillar	Estado	Unidades	P.cifcuito(W)
CIR 1	ARRAL LOMILLA (LA)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	- 64	6	1,500
CIR 1	CALLE HERMANOS LABAO	VAPOR SODIO ALTA PRESION	150	COLUMNA	ESFERICA	E.D.Nivel		3	450
CIR 1	CALLE HUERTA CASILDA	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	- 6	2	500
CIR 1	CALLE MANUELA GARCIA GARCIA	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		6	1.500
CIR 1	CALLE DR LAUREANO CASQUERO (UNO)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		13	3,250
CIR 2	CALLE HUERTA CASILDA	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	-	3	750
CIR 2	CALLE HUERTO CARRION	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	9	9	2.260
CIR 2	CALLE FGO LABAO GOMEZ	VAPOR SODIO ALTA PRESION	150	COLUMNA	ESFERICA	E.D.Nivel			750
CIR 2	CALLE FCO LABAO GOMEZ	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	-	6	1.500
CIR 3	CALLE HUERTA CASILDA	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	2	3	750
CIR 3	CALLE FCO LABAO GOMEZ	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	*	6	1,500
CIR 4	CALLE HERMANOS LABAO	VAPOR SODIO ALTA PRESION	150	COLUMNA	ESFERICA	E.D.Nível	-	8	1,200
CIR 4	CALLE ARROYO DEL MINERAL	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel		15	3.750
CIR 5	ARRAL LOMILLA (LA)	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	E.D.Nivel		9	1.350
CIR 5	ARRAL LOMILLA (LA)	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	-5	3	750
CIR 5	VIA SIN NOMBRE OCHO	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	E.D.Nivel		8	1.200
CIR 5	ARRAL ARROYO PRIMERO	VAPOR SODIO ALTA PRESION	250	COLUMNA	ASIMETRICA CERRADA	E.D.Nivel	*	2	500
CIR 5	CALLE SIN NOMBRE TRECE	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	E.D.Nivel		4	600

Total 111 24.080

Fuente: elaboración propia

4.28.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-028)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 3,46 kW,
 - que la potencia demandada por las 111 lámparas más los equipos auxiliares es de 27,67 kW,
 - que la medida en el centro de mando es de 25 kW,
 - que no tienen maxímetro ,
 - que la discriminación horaria es con D.H.,
 - que la tarifa actual es 2.0.2(actual 2.0A)
 - el factor de potencia es 0,9
 - Se estima que las penalizaciones cuando instalen el maxímetro serán de 1.821,51 €/año
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: se recomienda seguir en la T.U.R hasta que instalen el nuevo contador con maxímetro
 - Potencia óptima a contratar: Cuando se instale el nuevo contador habrá que contratar 27,71 kW, siendo la tarifa la 3.0A
 - → Discriminación horaria: tratándose de una tarifa 3.0.A la discriminación horaria correspondiente será la "3P" de tres periodos.

➡ Factor de potencia: Actualmente no se tiene necesidad de una batería de condensadores ya que el cuadro no cuenta con contador de reactiva. En cuanto instalen el nuevo contador será necesario revisar la facturación para ver si el recargo por este término es elevado, ya que el coseno de phi es 0,9 y no se prevén recargos.

Ejecución de proyectos: será necesario por tanto la realización de un proyecto para la contratación de la potencia recomendada, el importe del mismo será de 1.500 € y su ejecución estará en torno a los 111.000 €. En el Anexo II Justificación de Inversiones se detallan las inversiones a realizar para este tipo de proyectos, no obstante son totalmente estimativas ya que dependen del estado particular de cada instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-028-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{68,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

Instalación de un reloj astronómico que ajuste las horas de encendido y apagado, ya que el cuadro, por lo demás, se encuentra en perfectas condiciones desde el punto de vista de la eficiencia energética.

Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación, donde se obtiene una nueva recomendación para la contratación de la potencia del cuadro.

Potencia recomendada: 26 kW

68 Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 5.123 kWh al año
- Una reducción de emisiones de CO2 de 5,96 toneladas al año
- Un ahorro económico de 768,57 euros al año.

Y sería necesaria una inversión⁶⁹ de 300 euros amortizable en 0,39 años.

69 No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

Optimización Energética de Cuadros de Alumbrado Público SICAP.V3.2 Fecha de simulación: 18 / 2 / 2010

DATOS GENERALES

Municipio	MVELEZWALA
Nombre	CMA-028-A
Contador	1164415
Consumo (kWh)	87.404
Coste Actual (€)	14,108,14
Coste Opt. (GEFAEM)(E)	14,108,14

Tipo	Potencia (W)	Cantidat	
VAPOR SODIO ALTA PRESION	150	37	
VAPOR SODIO ALTA PRESION	250	74	
Total potencia instalada (W)	24.050		

MEDIDAS REALIZADAS

Tensiones de entrada (V)

Vra	390,60
Vat	392,20
Alth:	393,90

Régimen de funcionamiento

Sistems ancendida	Reloj analogico		
Horario de reducción	31:00		
Horas anuales de	utilización (h)		
Régimer naminai	1.862		
Régimen reducido	2.588		

Intensidades nominales (A)

lt.	41.20	
(9	38,10	
16	44,30	

Precio eléctrico de referencia (€'kWh)

	GEFAEM	Littlerado	
Situación actual	3.0888	0.15*	
Skizickin optimiz.	0.0	0.15*	

Intensidades reducidas (A)

	24,72
1(a)	21,88
100	26,58

Coseno phi

Geselvenhilt	0.91
Coseno phi 2	0.88
Goserna phi 3	0.92

^{*} Los precios fomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámpera:

Tipo eclus)	Pot Actual (W)	Про ргоривайо	Pat prop. (W)	
VAPOR SODIO ALTA PRESION	150	VSAP> VSAP	150	
VAPOR SODIO ALTA PRESION	250	VSAP> VSAP	250	
Tipo actual	Pot Actual (W)	Tipo propuesto	Pot prop. (VV)	
VAPOR SOCIO ALTA PRESION	150	VSAP -> HM	150	
VAPOR SODIO ALTA PRESION	250	VSAP → HM	260	

Incorporación RED-EST

PolitiVA
30,00
30,00

Sistema encentrido	Astronómico
Hara de reducción	01:00
Horas aquales de utilizad	ico oronuestas

Regimen norwisi 1737
Regimen reducido 2463

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	USAP	HM	BDN	RED-EST	VSAP+RED-EST	VSAF+BON	ASAP+BE	HM-BE
Consumo(kWh)	82,360	82 360	82.360	84,331	84.331	82.360	67.497	73.098
Ahorro (kWh)	5.123	5.123	5.123	3.153	3 153	5.123	19.988	14.386
Coste (€)	13,337,57	15.567,83	13,337,57	15.633,18	13,433,18	13.337,57	11.108,13	14.188,25
Ahorro (€)	768,57	-1.451,48	768,57	472,96	472,96	768,57	2.998,01	-62,10
Inversión (€)	300,00	9.998,07	7.559,40	5.853,60	5.863,60	7.558,40	11.770,00	26.056,07
P.Retorno (Años)	0,39	19	-6,88	12,37	12,37	9,83	3,92	

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	FIRM	NOB	RED-EST	VSAP-RED-EST	VSAP+RON	VSAPHIII	HATT
Consumo(kWh)	82,360	82 360	82,360	84,331	84,331	82.360	87,497	73.098
Ahorro (kWh)	5.123	5,123	5,123	3.153	3153	5.123	19.986	14.386
Coste (€)	13,337,57	15.567,63	13.337,67	13,633,18	13,433,18	13.337,57	11.108,13	14.168,25
Ahorro (€)	768,57	-1.451,48	768,57	472,96	472,96	768,57	2,998,01	-\$2,10
Inversión (€)	300,00	9.998,07	7.669,40	6.863,60	6.863,60	7.566,40	11.770,00	26.066,07
P.Retorno (Años)	0,39		9,83	12,37	12,37	9,83	3,92	

4.28.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 80196358700) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 80196358700

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	87.484,00	14.106,14	-	-	-	-	-
Estado futuro	82.361,00	13.337,57	300,00	5.123,00	5,96	768,57	0,39

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 5.123 kWh al año
- Una reducción de emisiones de CO2 de 5,96 toneladas al año
- Un ahorro económico de 768,57 euros al año.

Y sería necesaria una inversión⁷⁰ de 300 euros amortizable en 0,39 años.

⁷⁰ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.29 SUMINISTRO Nº 4321003300

4.29.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-029

Este Módulo de Medida, se encuentra en la C/ La Loma dentro de la Urbanización Los Almendros; perteneciente al núcleo urbano de Vélez Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 20536728 proporciona energía eléctrica a 20 luminarias distribuidas en 1 circuito, que pertenece al CMA-029-A.

Actualmente los modos de facturación y tarifas contratadas son modo 1 con tarifa 2.0.3., el contador no dispone de maxímetro, pero tiene instalado un reloj de DH, debiendo cambiarse en breve por un contador digital, ya que el contador que presenta es de tipo analógico y no responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 20.235 kWh/año, y un coste estimado de 3.076,90 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,30 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-029

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-029-A

El centro de mando, se encuentra situado en la C/ La Loma dentro de la urbanización Los Almendros; proporciona energía eléctrica a 20 luminarias distribuidas en un único circuito.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. Sin embargo la toma de tierra se encuentra en mal estado; dispone de protecciones generales tanto interruptor general como protecciones diferenciales, dispone también de una protección magnetotérmica para la maniobra. Para el encendido de las lámparas se está utilizando una fotocélula.

Centro de Mando y Protección CM-029-A

En cuanto a:

- Balastos de doble nivel: no hay instalado equipos de este tipo en el cuadro
- **Balastos electrónicos**: no hay instalados balastos de este tipo en el cuadro.
- **Reducción en cabecera:** no hay instalado sistemas de reducción.
- Telegestión: no hay instalados sistemas de control.
- Adaptaciones a normativa vigente: En breve la distribuidora sustituirá el contador por uno digital.

Ficha inventario Centro de Mando y Protección CMA-029-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre CMA-029-A Municipio MUNICIPIO DE VELEZ-MÁLAGA Via CALLE FOMENTO Localización EMPOTRADO EN LA FACHADA FINCA EN VENTA

MÓDULO DE MEDIDA

Nº de contador energía activa 20536728 Nº suministro 4321003300

PROTECCIÓN GENERAL

Cantidad Polos/Int. Marca 4PX20A GENERAL ELECTRIC Interruptor general P.magnetotérmica Ü P.Diferencial 0 OTRO

PROTECCIÓN DE MANIOBRA

Cantidad Polos/Int. Marca P.Magnetotérmica 1PX10A HAGER P.diferencial Contactores/Relés 4PX20A OTRO

ELEMENTOS DE MANIOBRA

Tipo reloj No tiene Marca Célula fot. Marca Si Interruptor manual Si Tipo sistema de ahorro No tiene Hora inicio reduc.

BIEN

Marca	OTRO
Marca	-
Hora fin reduc.	

ESTADO DEL CUADRO Armario

MAL Tierra Elem.protección

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dit.	Marca	Conductor	Canalización	Sección (mm2)	Long,linea (m)
CIR - 01	Alumb Publ	3PX25A	GE	0	~	Cobre	E.B.Tubo	8	. ~

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

IIII LITOLD LIDE	THE TOTAL BE BE OF THE STATE OF						
Régimen	Fase R	Fase S	Fase T				
Nominal	9.6	5.8	7.6				
Reducida	9.6	5.8	7.6				

TENSIONES DE FASE

VRS	VST	VTR
382.5	380.2	381.5

Cableado

BIEN

MAL

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Mercurio, que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas del tipo columna esférica.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-029-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO Centro de mando Município MUNICIPIO DE VELEZ MALAGA:

Circuite	Via	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P. circuito(W)
CIR-01	CALLE FOMENTO	VAPOR MERCURIO	125	COLUMNA	ESFERICA	Electromag.	BIEN	7	875
CIR -01	VIA SIN NOMBRE NUEVE	VAPOR MERCURIO	125	COLUMNA	ESFERICA	Electromag.	BIEN	9	1.125
CIR-01	CALLE SIN NOMBRE TRECE	VAPOR MERCURIO	125	COLUMNA	ESFERICA	Electromag	BIEN	1 4	500

Fuente: elaboración propia

4.29.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-029)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- "Estado actual". En resumen este suministro:
 - tiene una potencia contratada de 5,19 kW,
 - 🗢 que la potencia demandada por las 20 lámparas más los equipos auxiliares es de 2,8 kW,
 - que la medida en el centro de mando es de 4,43 kW,
 - que no tienen maxímetro ,
 - que la discriminación horaria es con D.H.,
 - que la tarifa actual es 2.0.3
 - el factor de potencia es 0,9
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.0 A modo 1 dentro de la T.U.R.
 - Potencia óptima a contratar: Se recomienda seguir con la potencia actualmente contratada.
 - Discriminación horaria: la discriminación horaria que corresponde al alumbrado público será "con D.H", se recomienda permanecer tal y como se encuentra actualmente.

⇒ **Factor de potencia**: no es necesario corregir el factor de potencia. Aunque se aconseja en todos los suministros revisar la facturación por si hubiese recargos en este término.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-029-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{71,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 20 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión 70 W.
- Instalación de 20 balastos electrónicos punto a punto.
- Instalación de un reloj astronómico para el encendido de luminarias y para reducción programa a la 1:00 a.m.
- Sustitución /Adecuación de luminarias en mal estado.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación, donde se obtiene una nueva recomendación para la contratación de la potencia del cuadro.
 - Potencia recomendada: 5 kW

ada: 5 KVV

⁷¹ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 1.855,33 kWh al año
- Una reducción de emisiones de CO2 de 15,24 toneladas al año
- Un ahorro económico de 1.855,33 euros al año.

Y sería necesaria una inversión⁷² de 2.568,40 euros amortizable en 1,38 años.

⁷² No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipia	MYELEZMALA
Nombre	C#49-029-A
Contador	20636728
Gonsumo (kWh)	20.235
Coste Actual (C)	3,078,90
Coste Opt. (GEFAEM)(C)	3,078,90

Tipo	Potencia (W)	Cantidad
VAPOR MERCURIO	125	20
Total potencia instalada (W)	9.6	C

MEDIDAS REALIZADAS

Tensiones de entrada (V)

	The state of the s
Vin	000,50
VAC	200,20
(Mpt)	231,20

Régimen de funcionamiento

So are moderation	Celuia
Hiromos a militarile	145
Horas anuales de u	tilización (h)
To declare percentage to all 11	24.570

Tragement com Sal	450	
Exigenit (caucio)	1,	

Intensidades nominales (A)				
4	9,30			
19	5,30			
1	7,8L			

Pregio eléctrico de referencia (EAWh)

t reate areasias acticicional femants					
	GIT YES	And the Real			
Strengmartial	0.099	C te-			
altura Amapolinic	0.0	C de-			

Intensid:	ides reducidos (A)
- M	9,30
推	5,00
# 1	7,41

Conena phi

Co another	0,3	
Coseedonia	0.9	
Caseno pri 3	0.3	

Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

This witten	Pat Admin Mg.	Про аптрим:	Property (Mr)
VAPOR MERCURIO	12'c	AA A/M	- 71
Fip's earliest	Following INT	Treatments	F0) 9590 (M6
YAPOR MERCURIO	125	VV> FM	71

Incorporación RED-EST

Smalleuer	Fallend
RH AHS	450
VONE REDIECT	7,50
Régimen de l'unclonaur	ento propuesto

	CONTRACTOR OF THE PROPERTY OF
Trans accept	ARTHURE
Himo attended in	21.22

Horas anuales de utilización pro puestas

Négurier regional 1707

Higginer regional 2433

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HM	BON	REGIST	VSAP*RED EST	VSAP4BON	USAP+BE	HMHRE
Consumo(kWh)	11.042	11,042	16.249	17.064	8.899	9.452	7.123	7.714
Ahorro (k/Vh)	9.192	9,192	3.985	3.170	11.335	11.702	13.112	12.521
Coste (C)	1.889,47	2.203.25	2,479,08	2.601,33	1,486,03	1.420,94	1.221.58	1.703,99
Ahorro (€)	1.287,42	873,65	597,82	475.58	1,588,86	1.855,98	1.855,33	1,372,90
Inversión (C)	1.458,40	1.821,99	1.026,99	4,900,00	6.958,40	1.914.39	2,568,40	4,961,99
P.Retomo (Años)	1.15	2,08	2,08	10,09	3.75	1,16	1,38	3,39

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Varorea	USAP	HM	HDM	REDEST	VSAP+RED-EST	VSAFHEDN	VSAF+BE	HMHBE
Consumo(kWh)	11.042	11.042	16.249	17.064	8,899	0.452	7.123	7.714
Ahorro (kWh)	9.192	9.192	3,985	3.170	11.335	11.782	13.112	12.521
Coste (€)	1.609,47	2.203.25	2,479,08	2,601,33	1,488,03	1.420,94	1.221,56	1.703.99
Ahorro (C)	1.287,42	873.65	597 82	475,58	1.588,88	1,855,98	1,855,33	1.372.90
Inversión (C)	1.458,40	1,821.99	1,026,99	4.800.00	5,958,40	1,914,39	2.588,40	4.661.99
P.Retomo (Años)	1,15	2.08	1.71	10.09	3,75	1,15	1,38	3.39

4.29.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 4321003300) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 4321003300

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	20.235,00	3.076,90	-	-	-	-	-
Estado futuro	7.123,00	1.221,57	2.568,40	13.112,00	15,24	1.855,33	1,38

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 1.855,33 kWh al año
- Una reducción de emisiones de CO2 de 15,24 toneladas al año
- Un ahorro económico de 1.855,33 euros al año.

Y sería necesaria una inversión⁷³ de 2.568,40 euros amortizable en 1,38 años.

⁷³ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.30 SUMINISTRO Nº 97040012563

4.30.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-030

Este Módulo de Medida, se encuentra junto al centro de transformación nº 83566, en la C/ Huerto de los Tardíos, dentro del núcleo urbano de Vélez. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 75523534, proporciona energía eléctrica a 9 luminarias distribuidas en 1 circuito, que pertenece al CMA-030-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 y tarifa 2.0.1. (Actual 2.0.A), el contador dispone de maxímetro y reloj de D.H.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **6.282 kWh/año**, y un coste estimado de **961,65 €/año**, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,09 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-030

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-030-A

El centro de mando, se encuentra situado junto al centro de transformación nº 83566, en la C/ Huerto de los Tardíos, proporciona energía eléctrica a 9 luminarias distribuidas en 1 circuito.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección, únicamente se encuentran problemas en la toma de tierra que se encuentra en mal estado. El cuadro dispone de protecciones generales, tales como interruptor general y protección diferencial, además dispone de protecciones para la maniobra. Para el encendido de las luminarias se utiliza un reloj astronómico. El cuadro no cuenta con las protecciones necesarias que marca el reglamento de baja tensión.

Centro de Mando y Protección CM-030-A

En cuanto a:

- **Balastos de doble nivel**: no hay instalados balastos de este tipo.
- **Balastos electrónicos**: no hay instalados balastos de este tipo.
- **Reducción:** no hay instalado reducción en el cuadro.
- **Telegestión**: el cuadro no dispone de sistemas de control.
- Adaptaciones a normativa vigente: el cuadro debe tener instalado protecciones para las sobretensiones de red. Se deben instalar en todos los circuitos protecciones diferenciales.

Ficha inventario Centro de Mando y Protección CMA-030-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-030-A	7.1
MUNICIPIO DE VELEZ-MÂLAGA	
CALLE CARLOS E LOPEZ NAVARRO	
JUNTO CT 83566	1.1

MÓDULO DE MEDIDA

Nº de contador energía activa

Nº suministro

97040012563

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad				
	1	11		
	-	++		
	1			

	Polos/Int.				
Ξ	4PX25A				
	Ū				
	0				

Marca				
GENERAL ELECTRIC				
8				
OTRO				

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad				
1	10			
154				
1	- 71			

Polos/Int.	
1PX15A	
0	
3PX25A	

Marca	
ABB	- 1
GE	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

4		
	Astronómico	
	No	
	Si	
	No tiene	
	G-	

Marca
Marca
Marca
Marca
Hora fin reduc

ODDIO:	
ORBIS	
ABB	
524	

ESTADO DEL CUADRO

Armario Tierra

_	BIEN	
	BIEN	

Cableado Elem.protección

	BIEN	
_	DIEN	
	MAL	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipa	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb.Publ.	3PX25A	ABB	0	L TO ACT T	Cabre	E.B.Tubo	В	

MEDIDAS REALIZADAS

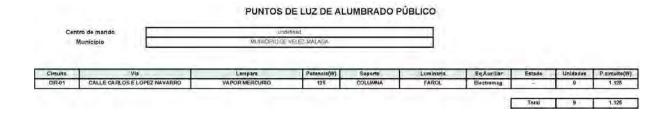
INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	0	3.4	2.3
Reducido	0	3.4	2.3

TENSIONES DE FASE

VRS	VST	VTR
414.3	413.2	414.7

Las principales características del circuito eléctrico y sus puntos de luz son:


- Lámparas: el 100 % son de Vapor de Mercurio por lo que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo columna farol.

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-030-A

Fuente: elaboración propia

4.30.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-030)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.
- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 1,03 kW,
 - que la potencia demandada por las 9 lámparas más los equipos auxiliares es de 1,29 kW,

408

- que la medida en el centro de mando es de 2,8 kW,
- que tienen maxímetro ,
- que la discriminación horaria es con D.H.
- que la tarifa actual es 2.0.A
- el factor de potencia es 0,9.

- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.0 A dentro de la T.U.R.
 - Potencia óptima a contratar: Se recomienda contratar 2 kW
 - Discriminación horaria: se recomienda permanecer tal y como se encuentra actualmente con D.H.
 - Factor de potencia: no se estima necesario mejoras en este factor.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-030-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{74,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

Las medidas que se proponen en este centro de mando son:

- La sustitución de 9 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión 70 W.
- Instalación de 9 balastos electrónicos con reducción de flujo propuesta a partir de la 1:00
 A.M.
- Sustitución /Adecuación de luminarias que se encuentren en mal estado.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 3 kW

⁷⁴ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Con su ejecución se estima que:

- El ahorro energético anual sería de 4.192 kWh al año
- Una reducción de emisiones de CO2 de 4,87 toneladas al año
- Un ahorro económico de 580,94 euros al año.

Y sería necesaria una inversión⁷⁵ de 1.020,78 euros amortizable en 1,76 años

⁷⁵ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipio	MVELEZMALA
Nombre	CMA-030-A
Contador	76623634
Consumo (kWh)	6.282
Coste Actual (C)	961,65
Coste Opt (GEFAEMYE)	961.68

Tipe	Potencia (W)	Cartidad
VAPOR MERCURIO	124	J
Total potencia instalada (W)	1.125	

MEDIDAS REALIZADAS

Tensiones de entrada (V)

	CONTRACTOR STATE OF THE STATE O	
1 W3 T	बाव श	
Val.	110.20	
3/4	414.71	

Régimen de funcionamiento

Seame er cenden.	Deligas maioria;
Stand Amedication	**
Horas anuales de	utilización (h)

Prepresentacional	4.200	
Wagner stands.	31	

William Co.

intensidades nominales (A)		
. F. S	1,39.	
ls.	3/ C	
11	2/30:	

Precio electrico de referencia (E/kWh)

	GETAEN	Umgapa
Folias/Ein ent auf	TIME	616*
al audomanino.	0.0	1.15"

Intensidades reducidos (A)

-	1/6
集	5/10
*	2,3

Coseno phi

Доветории 1	13
Chaesa phi 2.	1.1
Decision phil3	13

[&]quot; Los precios temados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Tipo estus /	Ital Adva (VVIII	Tice arecuests	Les prop (992
YAPOR MERCURIO	125	PASSIG BY	7)
i lp : situa	Foliatia (W)	INDIAN DESIGN	1905,000,000
VAPOR MERCURIO	125	AH > IH	7)

Incorporación RED-EST

Smulation	F3E(XVA)
RED DOT	7,50
WARHAR SHAL	7,5cL

Régimen de funcionamiento propues to

Fore de reducción	31.11
Horas anuales de utilizaci	ån propuestas
The short of the same of	1707

	THE REPORT OF THE PERSON OF TH
Regimen normal	1737
Hegimen red Laids	24:13

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	+190	EON	RED-EST	VSAP+RED-EST	VSAP+BDN	YSAP+BE	HMHEE
Cansumo(kWh)	3,518	3.518	5.177	6,008	2,611	2.692	2,090	2.263
Ahamo (kWh)	2.764	2.764	1.105	1.274	3,670	3.689	4.192	4.018
Coste [7]	598,54	780,52	795,65	769,47	458.91	474,74	380,71	579.40
Ahorro (€)	363.11	181.02	185,79	192,17	502.73	488,90	580:94	382.24
Inversion (C)	521,28	584,89	327.14	4.500.00	5.021,28	725.47	1.020,78	1.962,89
P.Retomo (Años)	1.43	3,78	3,78	23,41	9,98	1,49	1,75	6,13

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VSAP	HM	BON	RED EST	VSAP+RED-EST	VSAP+EDN	VSAP+BE	HMHBE
Consumo(kWh)	3,518	3,618	5.177	6,088	2.611	2.692	2:090	2.263
Ahorro (kWh)	2.764	2.764	1.105	1274	3,670	3,589	4.192	4.018
Coste (€)	598,54	760,62	795,65	769,47	458,91	474.74	380,71	579,40
Ahorro (C)	363,11	181.02	185,78	192,17	502.73	488,90	580,94	382.24
Inversión (E)	521,28	884,89	327.14	4,500,00	5.021,28	728.47	1.020,78	1.962,89
P.Retomo (Años)	1,43	3,78	1.97	23,41	9,98	1,49	1.75	6,13

4.30.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 97040012563) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 97040012563

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	6.282,00	961,65	-	-	-	-	-
Estado futuro	2.090,00	380,71	1.020,78	4.192,00	4,87	580,94	1,76

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 4.192 kWh al año
- Una reducción de emisiones de CO2 de 4,87 toneladas al año
- Un ahorro económico de 580,94 euros al año.

Y sería necesaria una inversión⁷⁶ de 1.020,78 euros amortizable en 1,76 años.

⁷⁶ No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.31 SUMINISTRO Nº 3022675500

4.31.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-031

Este Módulo de Medida, se encuentra ubicado en la fachada del centro de transformación nº 4105 concretamente en la C/ Amadeo Barrio Cruz del Cordero. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87733847, proporciona energía eléctrica a 153 puntos de luz agrupados en 7 circuitos, distribuidos entre el CMA-31-A y CMA-031-B.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con la tarifa actual 2.0A el contador dispone de maxímetro y reloj de discriminación horaria.

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de **77.526 kWh/año**, y un coste estimado de **11.803,96 €/año**, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de **1,15** %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-031

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-031-A

El centro de mando, se encuentra situado junto al módulo de medida en la C/ Amadeo atornillado en la fachada del centro de transformación nº 4105, proporciona energía eléctrica a 51 luminarias distribuidas en 3 circuitos.

A nivel general, el cuadro se encuentra en buenas condiciones. El cableado, armario y los elementos de protección se encuentran en buen estado pero la toma de tierra no existe.

El cuadro dispone de un interruptor general que actúa de protección general y de una protección magnetotérmica y otra diferencial que actúan como protecciones de maniobra. Para el encendido de las luminarias se está utilizando un reloj astronómico y tiene instalada reducción punto a punto mediante balastos de doble nivel.

En cuanto a:

- **Balastos de doble nivel**: este tipo de equipos son los instalados en las lámparas
- **Reducción en cabecera** No dispone de este tipo de reducción.
- **Telegestión**: No hay sistemas de este tipo instalados.
- Adaptaciones a normativa vigente: el cuadro debe tener instalado protecciones contra las sobretensiones de red.

Ficha inventario Centro de Mando y Protección CMA-031-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

 Nombre
 CMA-031-A

 Municipio
 MUNICIPIO DE VELEZ-MÁLAGA

 Via
 ARRAL CRUZ DEL CORDERO

 Localización
 Atomillado en la fachada posterior del CT4105

MÓDULO DE MEDIDA

Nº de contador energía activa 87733847 Nº suministro 3022675500

PROTECCIÓN GENERAL

 Cantidad
 Polos/Int.
 Marca

 Interruptor general
 1
 4PX4UA
 TERASAKI

 P.magnetotérmica
 0

 P.Diferencial
 0

PROTECCIÓN DE MANIOBRA

 Cantidad
 Polos/Int.
 Marca

 P.Magnetotérmica
 1
 2PX1DA
 TERASAKI

 P.diferencial
 1
 2X25A30
 TERASAKI

 Contactores/Relés
 2
 3PX8DA
 OTRO

ELEMENTOS DE MANIOBRA

Tipo reloj Astronómico Marca
Célula fot. No Marca
Interruptor manual Si Marca
Tipo sistema de ahorro Reduc. Flujo p. a p. Marca
Hora inicio reduc. D1:00 Hora fin reduc.

ESTADO DEL CUADRO

 Armario
 BIEN
 Cableado
 BIEN

 Tierra
 Elem.protección
 BIEN

Observaciones:		

CIRCUITOS DE SALIDA

Circuite	Tipo	P.Magn.	Marca	P.Dif	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb.Publ.	4PX25A	- T	4X40A300	T	Cobre	E.B.Tubo	6	
CIR-02	Alumb.Pubi	4PX25A	T	4X40A300	Ť	Cobre	E.B.Tubo	6	
CIR-03	Alumb.Publ.	4PX25A	T	4X40A300	T	Cobre	E.B.Tubo	6	0 3

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	19.8	14.3	11.3
Reducido	9.8	10.1	9.4

TENSIONES DE EASE

IFMOIOL	MED DEL	ASE
VRS	VST	VTR
399.1	400.1	401.2

ORBIS

OTRO

08:00

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: El 100% es decir 35 unidades son del tipo columna farol

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: El 100% es decir 35 unidades son del tipo columna farol

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: El 100% es decir 35 unidades son del tipo columna farol.

Fuente: Elaboración propia

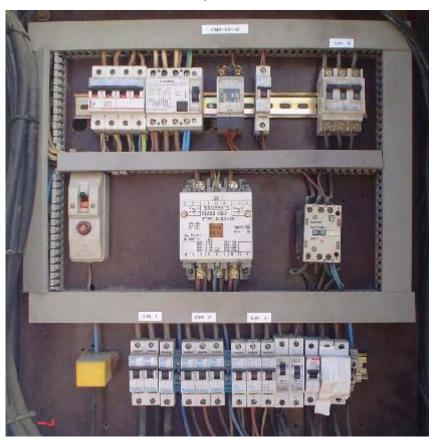
En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-031-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO COMBRADO MUNICIPIO DE VELES VIALOX

Circuite	100	Langues	Poteocia(#)	Soporte	-awitatis	Eq.Austar	Extrés	Christotiss	P. diroutoWy
C 841	CHILLE DON GUILLOTE	YAPOR SOCIO ALTA FRESION	150	COLUMNA	FARIOL	5.33f/e)	EVEN	5	753
6.84	GAE ANA DEO FELLET	YAPOR SOCIO ALTRIPESSON	190	COLLEGIA	FAROL	E 3/8/es	NEW		753
CHU	ARREL CRUZOR, CORDINO	VAPOR RICCIO ALFA PERSON	160	CHLIPPER	FREEZE.	6.3/5km	81684	78	7,260
0.104.	MILLE DESCRIPTION A CHEST	POSSERVAL PLANTAGE CONTRACT	160	COLUMNS.	+NGI	6.350m	ни		461
C 84*	CALLE POETON RAPAEL HA CEL CORRAL	VAPOR SIGNIO ALTE PRESIDA	150	COLUMN	FREEZ.	E. SAlivel	EFEN		753
CHEC	CARD & SANCHO PARKA	VARDICIDE IS ALT IN PROBING	140	CHILPMA	FRACE	F-350W)	HIFM		And
C R-81	ARRAL CRUZCEL CORDERO	VAPOR SOCIO ALFA PRESIDA	190	COLLANS	TARDL	6.3.55/el	SIEH	7	1,250
CR45	ARRAL CRUTCEL CORDERO	VAPOR SOCIO ALTA FRESION	190	COLUMNA	CAROL.	6.0.08vel	EITH	4	600

Fuente: elaboración propia


C) CENTRO DE MANDO CMA-031-B

El centro de mando, se encuentra situado junto al módulo de medida en la C/ Amadeo atornillado en la fachada del centro de transformación nº 4105, proporciona energía eléctrica a 51 luminarias distribuidas en 3 circuitos.

A nivel general, el cuadro se encuentra en buenas condiciones, contando el mismo con las protecciones pertinentes, tanto magnetotérmicas como diferenciales. El cableado, se encuentra también buenas condiciones al igual que la toma de tierra.

El cuadro dispone de un interruptor general y una protección diferencial que actúan de protección general. Tiene también instalada una protección magnetotérmica que actúan como protección de maniobra. Para el encendido de las luminarias se está utilizando un reloj analógico y una fotocélula y tiene instalada reducción punto a punto mediante balastos de doble nivel.

Centro de Mando y Protección CM-031-B

En cuanto a:

- Balastos de doble nivel: El cuadro dispone de 80 lámparas con balastos electromagnéticos de doble nivel.
- **Balastos electrónicos**: no se encuentran balastos de este tipo en este cuadro.
- **Reducción en cabecera**: No dispone de ningún elemento de reducción en cabecera.
- **Telegestión**: No hay sistemas de este tipo instalados. Deben tener instalados protecciones diferenciales en todos los circuitos.

Ficha inventario Centro de Mando y Protección CMA-031-B

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

CMA-031-B	
MUNICIPIO DE VELEZ-MÁLAGA	
ARRAL CRUZ DEL CORDERO	
Atornillado en la parte posterior del CT 4105	

MÓDULO DE MEDIDA

Nº de contador energía activa

	_
87733847	

Nº suministro

3022675500

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad		
	4	
	1	- 1

Polos/Int.

2	4PX63A	-= ;
	0	
4	X63A300	

Marca	
LEGRAND	
- 8	
SIEMENS	

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad				
	1			
	- 1	- 1		
	2			

Polos/Int.

	5-255-21111-1	
	1PX10A	
ì	0	
Ŧ	3PX80A	

	Marca
ſ	GENERAL ELECTRIC
ſ	
ı	OTRO

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Analógico	1
Si	
Si	ľ
Reduc. Flujo p. a p.	ij
01:00	ĺ
	_

Marca Marca Marca Marca Hora fin reduc.

ORBIS	
OTRO	
OTRO	
08:00	

ESTADO DEL CUADRO

Armario Tierra

BIEN	
BIEN	

Cableado Elem.protección

BIEN	
MAL	

CIRCUITOS DE SALIDA

Observaciones:

Circuito	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long linea (m)
CIR-01	Alumb, Publ	3PX32A	UNELEC	0	W	Cobre	Mixta	10	3 3
CIR-02	Alumb.Publ	3PX32A	UNELEC	0	1290	Cobre	Mixta	8	
CIR-03	Alumb Publ.	3PX20A	GE	.0		Cobre	Aerea	4	-
CIR-04	Alumb Publ	3PX32A	SIEMENS	0	1 70	Cobre	Aerea	6	~

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Régimen	Fase R	Fase S	Fase T
Nominal	21,2	34.6	27.5
Reducido	12.72	20,76	16.5

TENSIONES DE FASE

VRS	VST	VTR
397	397.5	400.1

En cuanto a los circuitos, los datos más relevantes son:

Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 71 % son de Vapor de sodio y el resto de vapor de mercurio por lo que existe un grupo de lámparas que no son eficientes y deberían ser cambiadas.
- Luminarias: El 71 % son luminarias del tipo brazo farol y el resto son del tipo brazo asimétrica abierta.

Fuente: Elaboración propia

Circuito 2

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % de las lámparas son de vapor de sodio por lo que son eficientes desde el punto de vista de la eficiencia energética.
- Luminarias: todas son del tipo brazo farol.

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % de las lámparas son de vapor de sodio por lo que son eficientes desde el punto de vista de la eficiencia energética.
- Luminarias: todas son del tipo brazo farol.

Fuente: Elaboración propia

Circuito 4

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % de las lámparas son de vapor de mercurio por lo que no son eficientes desde el punto de vista de la eficiencia energética.
- Luminarias: todas son del tipo brazo asimétrico abierto

Fuente: Elaboración propia

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-031-B

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

Centro de mando	undelined	
Municipio	MUNICIPIOTIE VELETAMI AVIA	

Circuito	Via	Lampara	Potencia(W)	Seperté	Luminaria	Eq.Auxiliar	Estado	Unidades	P.circuito(W
CIR-01	CALLE ALMENA	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	- 1	3	450
CIR-01	CALLE ORTIGA	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		1	150
CIR-01	CALLE RETAMA	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		1	150
CIR-01	CALLE VICARIO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	-	4	600
CIR-01	CALLE OLIVARES	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	2.0	7	1.050
CIR-01	BARRO PILAR (DEL)	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		2	450
CIR-01	CALLE POZO ALMECIN	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.		4	500
CIR-01	CALLE POZOS DULCES	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.		4	500
CIR-01	CALLE SIN NOMBRE B	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	- 22	1	150
CIR-01	CALLE POZO CUBIERTO	VAPOR MERCURIO	126	BRAZO	ASIMETRICA ABIERTA	Electromag.		4	500
CIRO1	CALLE CANTAROS (LOS)	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E,D.Nivel		7	150
CIRUI	CALLE HUERTO VICARIO	VAPOR SODIO ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel		7	1.050
CIR41	CALLE CRUZ DEL CORDERO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		2	300
CIR-01	CALLE PESEBRE TRASIERRA	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.		1	125
CIR41	CALLE ABUL CASIN BENEGAS	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		7	1.050
CIR-01	CALLE TORNO SAN JUAN DE DIOS	VAPOR MERCURIO	126	BRAZO	ASIMETRICA ABIERTA	Electromag.	-	1	126
CIR-01	CALLE DOCTOR EDUARDO JIMENEZ POHEY	VA POR MERCURIO	125	BRAZO	A SIMETRICA ABIERTA	Electromag.	- *	1	125
CIR-02	CALLE TENERIAS	VAPOR SODIO ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel		3	450
CIR-02	GALLE POZO CUBIERTO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	1	2	300
CIR-02	CALLE HUERTO VICARIO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		1	150
CIR-02	CALLE CRUZ DEL CORDERO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	- 5-	6	900
CIR-02	CALLE COFRADE ACOSTA NADALES	VAPOR SODIO ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel	- 1	3	450
CIR-02	CALLE DOCTOR EDUARDO JIMENEZ POHEY	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	2	3	450
CIR-03	CALLEZALIA	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	345	2	300
CIR403	CALLE BENTOMIZ	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel		3	450
CIR-03	CALLE OLIVARES	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	-	3	450
CIR-03	CJTO HUERTO TARDIO	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	-	3	450
CIR43	CALLE RINGON DE ZALIA	VAPOR SODIO ALTA PRESION	150	BRAZO	FARCL	E.D.Nivel		1	150
CIR-03	CALLE CRUZ DEL CORDERO	VAPOR SODIO ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel		- 6	900
CIR.03	CALLE ABUL CASIN BENEGAS	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E,D,Niyel		6	900
CIR 03	CALLE CORREGIDOR DIEGO ARIAS	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL.	E.D.Nivel		1	150
Level	11 X 1982 1983 1984 1	Sept. Walley, Sept.		1878(±3	ASSESS CHAMBS	Radrings 1	195	1 4	1 82
1986	ersen, ingsprom etogonyty	photograph and regard	1 100	WE DE	September 195 September 1955		- (i)	7 A	V 200

Fuente: elaboración propia

4.31.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-031)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.

- Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
- Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
- Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

"Estado actual". En resumen este suministro:

- tiene una potencia contratada de 5,08 kW,
- que la potencia demandada por las 153 lámparas más los equipos auxiliares es de 25,75 kW.
- ⇒ que la medida en el centro de mando A es de 8,15 kW y B es de 14,32 kW.
- que tienen maxímetro ,
- que dispone de discriminación horaria,
- que la tarifa actual es 2.0A,
- el factor de potencia es 0,82.
- ⇒ Estimar lo que están pagando de penalizaciones por el maxímetro 1.549,81 €.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda negociar un contrato con una comercializadora de libre mercado, ya que dispone de maximetro activado y está marcando una media de 24 kW.
 - Potencia óptima a contratar: Se recomienda contratar 24 kW que es la potencia que realmente demanda la instalación de alumbrado público
 - Discriminación horaria: Se aconseja contratar el tipo 3P
 - ➡ Factor de potencia: Actualmente no se está facturando la energía reactiva pero si en el momento que se instale la potencia demandada se aconseja que se realice un seguimiento de la facturación y encaso de observar recargos debería estudiarse la posibilidad de instalar una batería de condensadores.
 - Ejecución de proyectos: será necesario la realización de un proyecto de instalación por un importe de 1.500 €y su posterior ejecución ascenderá a unos 150.000 € aproximadamente. En el Anexo II Justificación de Inversiones se detallan las inversiones a realizar para este tipo de proyectos, no obstante son totalmente estimativas ya que dependen del estado particular de cada instalación.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-031-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP⁷⁷, desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

No se proponen medidas para este cuadro en particular ya que dispone de lámparas de vapor de sodio con balastos de doble nivel y la reducción está bien instalad y funcionando correctamente.

C) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-031-B

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{78,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

La inversión mostrada a continuación no se corresponde con la reflejada por la herramienta SICAP, ya que existen equipos eficientes instalados en algunas lámparas del cuadro. Dicho esto, se proponen las siguientes mejoras.

- La sustitución de 22 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 22 balastos electrónicos de doble nivel, con reducción de flujo marcada a la 1:00 A.M.

⁷⁷ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

⁷⁸ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

- Instalación de un reloj astronómico.
- Sustitución /Adecuación de luminarias que se encuentren en mal estado.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 23 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 5.039 kWh al año
- Una reducción de emisiones de CO2 de 5,86 toneladas al año
- Un ahorro económico de 633,63 euros al año.

Y sería necesaria una inversión⁷⁹ de 2.373,93 euros amortizable en 3,75 años

⁷⁹ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

DATOS GENERALES

Municipia	MVELEZMALA
Nomice	CMA-031-B
Contedor	87733847
Consumo (kWh)	48,309
Coste Actual (C)	7.946.42
Coste Opt. (GEFAEMINE)	7.946,42

Tipa	Potencia (W)	Carrildeo
VAPOR MERCURIO	fal.	22
VAIPOR SODIO ALTA PRESION	150	T)
Total potencia instalada (W)	V.3	50

MEDIDAS REALIZADAS

Tensiones de entrada (V) 10. 39/,UJ 10. 397,50 10. 403,10

Régimen de funcionamiento

Sittle trailendendido	Columetrary
Нотако петериод от	C'.03
Horas anuales de	utilización (h)

Equipment coming	. 184	П
Esamen reducing	26.0	

Intensid	ades nominales (A)
1 1	21,2t
	01,30
100	27,50

Precio eléctrico de referencia (C/KWh)

To proceed the Control of	CE-HEV	D'IESA
Stratten actual	0.1100	0.15"
interest or remains at	J.J	0.15

Intensida	ides reducidos (A)
Th.	12/2
12	20,73
t t	13,50

Cosano phi

Cosato on 1	179	П
Disagon	0.70	
Court pir a	J,74	

Los precies tomades para el cálcule han sido intreducidos per el usuarie.

SIMULACIONES REALIZADAS

	Sustitución de lamp:	aras	
Tips wetter!	Ex. Earth byd.	Tico proprietto	PREMA (MI
VAPOR MERCURIO	25	VV = VSVE	70
VAIPOR SODIO ALTA PRESION	(5)	VANE INVAVE	5.1
Tipo potini	FOR STREET, NAME OF	Tico propuesto:	Figure (w)
VAPOR MERCURID	25	We car ly	70
VA POR SODIO ALTA PRESION	154	VX4F> HM	521

Incorporación RED-EST

Emis Bain's	Fortion
RED EST	00,00
VSAF (RED EST	22,33

Règimen de funcionamiento propuesto

School training air	Astronomica
Hors de reodocida	30.11
Heres annules de utilizad	Itu nummunedas

Segmen numera	1737
h/éginen réducida ,	7443

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

Valores	VSAP	HIM	HDH	RED-EST	VSAP+RED-EST	VSAP+BDW	VSAP+BE	HMHBE
Consumo(kWh)	43.270	43.270	47,910	61,046	43.637	43.270	34.927	37.825
Aherro (kWh)	5.039	5.038	498	-2.735	4.672	5.038	13,382	10.484
Coste (€)	7,312,78	9.502.89	7.871.46	8.366,72	7.367,94	7.312.78	6.061,34	8,686,14
Ahorro (C)	633.64	-1.856,46	74,95	410,30	578,47	633,64	1.895,07	-739,72
Inversión (£)	1.574.24	9.463,00	5.787,89	5.883.60	6.677,04	6.783,83	9.995,24	23.827.00
P.Retomo (Años)	2.48		-5,99		11,88	10,67	6,30	

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

Valores	VEAP	FUM	BON	REDEST	VSAF-REDÆST	VSAPHEDN	VSAP+BE	HMHGE
Consumo(KWh)	43.270	43,270	47,910	61,046	43.537	43.270	24.927	37.825
Ahorro (kWh)	5.039	5.038	498	-2.735	4.572	5.039	13.382	10,484
Caste (€)	7.312.78	8.502,88	7,871,48	6,356,72	7.387.94	7.312,76	6,081,34	8,686,14
Ahomo (C)	633,64	-1.558,48	74.95	410.30	578.47	633,64	1.885,07	-738,72
inversión (E)	1.574,24	8.163.00	5.787.88	5,853,60	8.877,04	6.783.83	9.985,24	23,827,00
P.Retomo (Arlos)	2.48	- X	77,21		11,88	10.67	5,38	*

4.31.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 3022675500) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro Nº 3022675500

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	77.526,00	11.803,96	-	-	-	-	-
Estado futuro	72.487,00	11.170,33	2.373,39	5.039,00	5,86	633,63	3,75

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 5.039 kWh al año
- Una reducción de emisiones de CO2 de 5,86 toneladas al año
- Un ahorro económico de 633,63 euros al año.

Y sería necesaria una inversión⁸⁰ de 2.373,39 euros amortizable en 3,75 años.

80 No se han tenido en cuenta la posible reducción del coste debida a la optimización de la facturación, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

4.32 SUMINISTRO Nº 2359852300

4.32.1 ESTADO ACTUAL

A) MÓDULO DE MEDIDA MMA-032

Este Módulo de Medida, se encuentra en un armario de pared ubicado en la fachada del centro de salud de Vélez Norte, concretamente en la C/ San Isidro, dentro del núcleo urbano de Vélez Málaga. Actualmente se encuentra en funcionamiento mediante el número de contador de energía activa nº 87672026, proporciona energía eléctrica a 97 luminarias distribuidas en 8 circuitos, que pertenece al CMA-032-A.

Actualmente los modos de facturación y tarifas contratadas son modo 2 con tarifa 3.0.1. (Actual 2.1.A), el contador dispone de maxímetro, y reloj de DH, tratándose de un contador digital por lo que responde a la normativa vigente, (Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medidas del sistema eléctrico).

Este suministro presenta un consumo medio anual, según estimaciones basadas en las mediciones eléctricas de 50.698 kWh/año, y un coste estimado de 6.886,13 €/año, calculado en función de un precio medio fijado por la ingeniería redactora del estudio, no considerándose representativo los valores aportados por la herramienta de gestión GEFAEM. Siendo el porcentaje de consumo con respecto al alumbrado público de 0,75 %.

La ubicación del módulo de medida, centros de mando y luminarias se muestran en la figura siguiente, y con más detalle en el **Anexo III Planos**.

Módulo de Medida, Centros de Mando y puntos de luz MMA-032

Fuente: Agencia Andaluza de la Energía y elaboración propia

B) CENTRO DE MANDO CMA-032-A

El centro de mando, se encuentra situado en un armario de pared en el centro de salud de Velez Norte; concretamente en la calle San Isidro, proporciona energía eléctrica a 97 luminarias distribuidas en 8 circuitos. Existen en el cuadro dos circuitos más instalados que proporcionan energía a una fuente cercana y a unos contenedores de recogida selectiva automáticos.

A nivel general, el cuadro se encuentra en buen estado tanto el armario, cableado y los elementos de protección. Sin embargo no dispone de toma de tierra por lo que no está cumpliendo con la normativa, tiene instalado un interruptor general con su protección diferencial y para el encendido de las luminarias se está utilizando un reloj analógico que además controla el inicio y fin de la reducción instalada.

Centro de Mando y Protección CM-032-A

En cuanto a:

- **Balastos de doble nivel**: Todas las lámparas de Sodio disponen de balastos de Doble Nivel.
- **Balastos electrónicos**: no tiene instalados sistemas de este tipo.
- **Reducción en cabecera**: El cuadro no dispone de este tipo de reducción.
- Telegestión: no dispone de sistemas de control instalados.
- Adaptaciones a normativa vigente: el cuadro debe disponer de una protección contra las sobretensiones de red como establece el reglamento de baja tensión. Deben instalar protecciones diferenciales en todos los circuitos del cuadro

Ficha inventario Centro de Mando y Protección CMA-032-A

CENTRO DE MANDO Y PROTECCIÓN

DATOS GENERALES

Nombre Municipio Via Localización

	CMA-032-A	
	MUNICIPIO DE VELEZ-MÁLAGA	
	CALLE SAN ISIDRO	
-	En pared del centro de salud Velez-Málaga	

MÓDULO DE MEDIDA

Nº de contador energía activa

2222222	
87672026	

Nº suministro

2359852300

PROTECCIÓN GENERAL

Interruptor general P.magnetotérmica P.Diferencial

Cantidad	
1	
0	
1	

	Polos/int.	
	4PX50A	
	0	
	0	
_		_

Marca
GENERAL ELECTRIC
OTRO

PROTECCIÓN DE MANIOBRA

P.Magnetotérmica P.diferencial Contactores/Relés

Cantidad	
1	
1	-
2	- 1

	Polos/Int.	
	2PX10A	
-	2X25A300	i
	0	

	Marca	
	OTRO	
-	OTRO	

ELEMENTOS DE MANIOBRA

Tipo reloj Célula fot. Interruptor manual Tipo sistema de ahorro Hora inicio reduc.

Analiation
Analógico
Si
Sí
Reduc. Flujo p. a p
01:00

Marca Marca Marca Marca Hora fin reduc.

	THEBEN	
	ORBIS	4 .
	OTRO	
П	3.5	
	08:00	

ESTADO DEL CUADRO

Armario Tierra

4	BIEN	
	MAL	

Cableado Elem.protección

MAL	
MAL	- 11

Observaciones:
El circuito nº8 alimenta una fuente pequeña que va a 12v y consume 15w. El circuito nº7 alimenta contenedores de basura subterraneos. No funciona en el momento de la medición

CIRCUITOS DE SALIDA

Circuita	Tipo	P.Magn.	Marca	P.Dif.	Marca	Conductor	Canalización	Sección (mm2)	Long.linea (m)
CIR-01	Alumb.Publ.	3PX25A	GE	0		Cobre	E.B.Tubo	6	
CIR-02	Alumb.Publ.	3PX25A	GE	0		Cobre	E.B.Tubo	6	(4)
CIR-03	Alumb.Publ.	3PX25A	GE	0	- ×	Cobre	E.B.Tubo	6	>-
CIR-04	Alumb.Publ.	3PX25A	GE	0		Cobre	E.B.Tubo	6	20 =
CIR-05	Alumb,Publ.	1PX10A	GE	0		Cobre	Aerea	1.5	
CIR-06	Alumb.Publ.	1PX16A	OTRO	0	1.5	Cobre	E,B,Tubo	6	*
CIR-07	Otros	4PX25A	ABB	4X25A300	ABB	Cobre	E.B.Tubo	6	
CIR-08	Otros	2PX10A	OTRO	2X25A30	OTRO	Cobre	E.B.Tubo	6	*

MEDIDAS REALIZADAS

INTENSIDADES DE CARGA

Hitg men	-cx:H	4503	1-600
hipminal .	12	32.3	30.3
15-1101	27.1	18.8	22.91

TENSIONES DE FASE

VHG	- Mā	Atte
400.0	434.3	£C7.9

En cuanto a los circuitos, los datos más relevantes son:

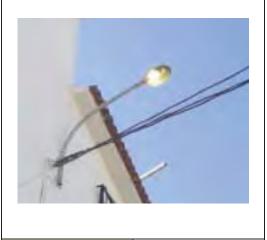
Circuito 1

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 70 % son de Vapor de Mercurio, y el 30 % son de Vapor de Sodio de Alta Presión por lo que existe un grupo que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo brazo asimétrico abierto el 70 %, del tipo brazo farol el 4%, del tipo brazo asimétrico cerrado el 26 % y del tipo columna farol el 4%.

Fuente: Elaboración propia

Circuito 2


Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 44 % son de Vapor de Mercurio, y el 56 % son de Vapor de Sodio de Alta Presión por lo que existe un grupo que no son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son de tipo columna farol el 8%, del tipo brazo farol el 48 % y del tipo brazo asimétrico cerrado el 44%.

Tipo de soporte	Brazo	Tipo de soporte	Columna
Tipo de luminaria	Farol	Tipo de luminaria	Farol

Tipo de soporte Brazo
Tipo de luminaria Asimétrico abierto

Fuente: Elaboración propia

Circuito 3

Las principales características del circuito eléctrico y sus puntos de luz son:

- **Lámparas**: el 100 % son de Halogenuro Metálico por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son de tipo columna farol el 87 % y el 13% del tipo brazo farol

Fuente: Elaboración propia

Circuito 4

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Halogenuro Metálico por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son de tipo columna farol el 25 % y el 75 % son de tipo brazo farol.

Fuente: Elaboración propia

Circuito 5

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- Luminarias: son todas de tipo brazo farol.


Fuente: Elaboración propia

Circuito 6

Las principales características del circuito eléctrico y sus puntos de luz son:

- Lámparas: el 100 % son de Vapor de Sodio de Alta Presión por lo que son adecuadas desde el punto de vista de la eficiencia energética.
- **Luminarias**: son todas de tipo columna farol.

Fuente: Elaboración propia

Circuito 7

■ Este circuito proporciona energía a unos contenedores subterráneos de recogida selectiva cercanos.

Circuito 8

Este circuito alimenta una fuente cercana pequeña que consume unos 15 W de potencia por lo que no se recomienda independizar el suministro (por su escasa demanda).

En cuanto a los puntos de luz se han inventariado:

Puntos de Luz de Alumbrado Público del CMA-032-A

PUNTOS DE LUZ DE ALUMBRADO PÚBLICO

entro de mando	undaffried	
Municipio	MUNICIPIO DE VELEZ-MÁLAGA	

Circuito	Yia	Lampara	Potencia(W)	Soporte	Luminaria	Eq.Auxiliar	Estado	Unidades	P, circuito (W
CIR-01	CALLE FRAGUA	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	4	500
CIR-01	CALLE TEJARES	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	8	1.000
CIR-0.1	CALLE RENIDERO	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	.5	625
CIR-01	CALLE REÑIDERO	VAPOR SODIO ALTA PRESION	150	COLUMBIA	FAROL	E.D.Nivel	BIEN	2	300
CIR-01	CALLE RENIDERO	VAPOR SODIO ALTA PRESION	250	BRAZO	ASIMETRICA CERRADA	E.D.Nivel	BIEN	10	2,500
CIR41	CALLE PROVISION	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag	BIEN	7	875
CIR-01	CALLE SAN ISIDRO	VAPOR SODIO ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel	BIEN	2	300
CIR-01	CALLE HUERTO CARRION	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	8	1.000
CIR-02	CALLE BEATOS	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	3	375
CIR-02	CALLE COMPAS	VAPOR SODIO ALTA PRESION	150		FAROL	E.D.Nivel	BIEN	A	600
CIR-02	CALLE MARTILLO	VAPOR MERCURIO	125	BRAZO	ASIMETRICA ABIERTA	Electromag.	BIEN	7	875
2IR-02	CALLE SANJUAN	VAPOR SODID ALTA PRESION	160	BRAZO	FAROL	E.D.Nivel	BIEN	6	900
CIR-02	CALLE SAN ISIDRO	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	E.D.Nivel	BIEN	2	300
CIR-02	PLAZA SAN JULIAN	VAPOR SODIO ALTA PRESION	150	BRAZO	FAROL	E.D,Nivel	BIEN	1	150
CIR-03	CALLE FELIX LOMAS	HALOGENUROS METALICOS	150	BRAZO	FAROL	E.D.Nivel	MAL	2	300
CIR-03	CALLE FELIX LOMAS	HALOGENUROS METALICOS	150	COLUMNA	FAROL	E.D.Nivel	BIEN	13	1.950
CIR-04	CALLE FELIX LOMAS	HALOGENUROS METALICOS	150	COLUMNA	FAROL	E.D.Nivel	BIEN	2	300
CIRIO4	CALLE ALCALDE JOSE HERRERA	HALOGENUROS METALICOS	150	BRAZO	FAROL	E.D.Nivel	BIEN	- 6	900
CIR-05	CALLE SAN ISIDRO	VAPOR SODID ALTA PRESION	150	BRAZO	FAROL	E.D.Nivel	BIEN	1 10	150
CIR-06	CALLE SAN ISIDRO	VAPOR SODIO ALTA PRESION	150	COLUMNA	FAROL	E.D.Nivel	BIEN	4	500

Fuente: elaboración propia

4.32.2 PROPUESTAS DE ACTUACIÓN

A) FACTURACIÓN Y MERCADO LIBRE (MMA-032)

A la hora de analizar y sugerir recomendaciones ante los cambios de contratación en el mercado libre, se ha tenido en cuenta:

- La legislación y normativa sobre tarifas y facturación eléctricas, en este caso:
 - ⇒ Real Decreto 1164/2001, de 26 de octubre, por el que se establecen las tarifas de acceso a las redes de transporte y distribución de energía eléctrica
 - ⇒ Real decreto 485/2009, de 3 de abril, por el que se regula la puesta en marcha del suministro de último recurso en el sector de la energía eléctrica.
 - Orden ITC/1659/2009, de 22 de junio, por la que se establece el mecanismo de traspaso de clientes del mercado a tarifa al suministro del último recurso de energía eléctrica y el procedimiento de cálculo y estructura de las tarifas de último recurso de energía eléctrica.
 - Orden ITC/1723/2009, de 26 de junio, por la que se revisan los peajes de acceso a partir de 1 de julio de 2009 y las tarifas y primas de determinadas instalaciones de régimen especial.
 - Resolución de 29 de junio de 2009, de la Dirección General de Política Energética y Minas, por la que se establece el coste de producción de energía eléctrica y las tarifas de último recurso a aplicar en el segundo semestre de 2009.

Total

- **"Estado actual"**. En resumen este suministro:
 - tiene una potencia contratada de 12,18 kW,
 - que la potencia demandada por las 97 lámparas más los equipos auxiliares es de 16,67 kW,
 - que la medida en el centro de mando es de 13,82 kW,
 - que sí tienen maxímetro ,
 - que la discriminación horaria es con D.H.
 - que la tarifa actualmente contratada es 3.0.1. (actual 2.1.A),
 - el factor de potencia es 0,79
 - Estimar lo que están pagando de penalizaciones por el maxímetro 308,74 €.
- La experiencia del equipo redactor del presente POE.
 - Contrato Suministro: Se recomienda seguir con la tarifa actualmente contratada 2.1 A. Aunque es conveniente aumentar la potencia a contratar a 15 kW para cubrir la demanda energética del cuadro.
 - Potencia óptima a contratar: Se aconseja contratar 15 kW., pero se recomienda observar las lecturas del maxímetro con el fin de ajustar la potencia contratada.
 - Discriminación horaria: La discriminación horaria más oportuna al uso del suministro es con D.H.
 - Factor de potencia: En cuanto al factor de potencia se aconseja la instalación de una batería de condensadores que corrija el coseno de phi haciéndolo más próximo a la unidad y de esta forma evitar recargos en facturación. La batería adecuada es una de 8 kVAr por un importe de 569,49 €.

B) OPTIMIZACIÓN DEL CENTRO DE MANDO CMA-032-A

Analizando los consumos y los diferentes componentes que en la actualidad tiene este centro de mando se recomienda un conjunto de medidas con las que se consigue un importante ahorro energético. Para ello se ha utilizado la herramienta de optimización de centros de mandos, SICAP^{81,} desarrollada por la Agencia Andaluza de la Energía, la legislación y normativa actual y la experiencia del equipo redactor.

⁸¹ Las propuestas realizadas por el equipo redactor del presente estudio, basándose en su experiencia, no siempre coinciden con las resultantes de la herramienta de cálculo SICAP de la Agencia Andaluza de la Energía.

Existen lámparas de halogenuro metálico de 150 W que no han sido propuestas para ser sustituidas puesto que están individualizadas en dos calles concretas del centro del municipio y en dichas calles no existe mezcla cromática.

La inversión mostrada a continuación no se corresponde con la reflejada por la herramienta SICAP, ya que existen equipos eficientes instalados en algunas lámparas del cuadro. Dicho esto, se proponen las siguientes mejoras.

- La sustitución de 42 lámparas de vapor de mercurio de potencia 125 W por Vapor de Sodio de Alta presión de 70 W.
- Instalación de 42 balastos de doble nivel.
- Instalación de un reloj astronómico que controle el encendido de lámparas y el comienzo y fin de la reducción aplicada en el cuadro.
- Optimización de la facturación: Tras la realización de los cambios en los centros de mando, se debería realizar otra optimización de la contratación.
 - Potencia recomendada: 12 kW

Con su ejecución se estima que:

- El ahorro energético anual sería de 8.707 kWh al año
- Una reducción de emisiones de CO2 de 10,12 toneladas al año
- Un ahorro económico de 758,13 euros al año.

Y sería necesaria una inversión⁸² de 3.689,82 euros amortizable en 4,87 años

⁸² No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

Simulación de medias de ahorro energético y económico según SICAP

Optimización Energética de Cuadros de Alumbrado Público SICAP.V3.2 Fecha de simulación: 6 / 5 / 2010

DATOS GENERALES

-	MYELEMALA
Nombre	CMA-032-A
Contador	87672026
Consumo (kWh)	50.698
Coste Actual (c)	6.886,13
Coste Opt. (GEFAEM)(€)	6,686,13

197	T 2000000 (0.0)		
HALOGENUROS METALICOS	150	23	
VAPOR MERCURIO	125	42	
VAPOR SODIO ALTA PRESION	150	22	
VAPOR SODIO ALTA PRESION	250	10	
	14.5	80	

MEDIDAS REALIZADAS

Tension	Tensiones de entrada (V)						
Vrs	406,50						
Vst	404,30						
Vit	407,90						

Régimen nominal	1.787
Régimen reducido	2.513

Intensid	Intensidades nominales (A)					
lr .	32,00					
ls .	22,30					
lt .	20,30					

Intensidades reducidas (A)						
lr.	22,40					
İs	16,81	П				
it	14,21					

Coseno	pni = =
	12
III.	109

^{*} Los precios tomados para el cálculo han sido introducidos por el usuario.

SIMULACIONES REALIZADAS

Sustitución de lámparas

Todatal	Fd Acus (M)	Toursesses	Parent	
HALOGENUROS METALICOS	150	HM> HM	150	
VAPOR MERCURIO	125	VM -> VSAP	70	
VAPOR SODIO ALTA PRESION	150	VSAP> VSAP	150	
VAPOR SOCIO ALTA PRESION	200	1 VS4P - VS4P	050	
THERE	Part and	11	1 THE P.	
HALOGENUROS METALICOS	150	HM> HM	150	
VAPOR MERCURIO	125	VN> HM	70	
VAPOR SODIO ALTA PRESION	150	VSAP -> HM	150	

Incorporación RED-EST

Smooth	t Edmin
RED-EST	22,00
VSAP+RED-EST	22,00
Régimen de funcionamie	nto propuesto
	-
	-51:80
Horas anuales de utilizac	ión propuesta:
Régimen nominal	1737
Régimen reducido	2463

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO ACTUAL

16800881	-	-	120000	REDAEST	VSAPHREDIEST	SEAFFERD.	YSAPHEE	HAME
Consumo(kWn)	41.600	41.600	\$0.588	67. 170	48,062	41.391	31.290	33,109
Ahorro (kWh)	9.098	9.098	110	-6.471	2.636	8.707	19.407	17.589
Coste (€)	6.083,18	7.611,19	6873,49	7.599,94	6.789,72	6.127,99	4.867,68	6,564,59
Ahorro (€)	802,94	-725,06	12,63	-713,81	96,40	758,13	2.018,44	321,53
inversión (€)	2.732,64	6,338,61	3803,69	5,602,60	8.035,44	5.667,43	12.076,64	20.853,61
P.Retomo (Años)	3,40	(8)	-8,74		83,34	7,47	5,98	64,85

OPTIMIZACIÓN SEGÚN COSTE ELÉCTRICO OPTIMIZADO (GEFAEM)

TRUTS	1000	-	2.47	TELLEST.	YSAPHRED-EST	SSARREN	250400	-AME
Consumo(kWh)	41,600	41.600	50.588	57.170	48.062	41.991	31.290	33,109
Ahorro (kWh)	9.098	9.098	110	-6.471	2.636	8.707	19.407	17.589
Coste (€)	6.083,18	7.611,19	6873,49	7.599,94	6.789,72	6.127,99	4.867,68	6,564,59
Ahorro (€)	802,94	-725,06	12,63	-713,81	96,40	758,13	2.018,44	321,53
Inversión (€)	2.732,64	6.338,61	3 803,89	5,602,80	8.035,44	5.667,43	12.076,64	20,853,61
P.Retomo (Años)	3,40	(=)	301,01	-	83,34	7,47	5,98	64,85

4.32.3 RESUMEN DE RESULTADOS ESPERADOS

Los resultados esperados para este suministro (№ 2359852300) se han estudiado según:

- **Estado actual** sin medidas de ningún tipo, pero suponiendo que ya se han instalado los nuevos contadores digitales.
- Situación futura que incluye las modificaciones propuestas para la optimización de los centros de mando, es decir muestra el ahorro máximo que se podría conseguir.

Simulación del ahorro económico del suministro № 2359852300

Escenario	Consumo energético (kWh/año)	Coste anual (€año)	Inversión (€)	Ahorro energético (kWh/año)	Ahorro ambiental (tCO2/año)	Ahorro económico (€año)	Amortización (años)
Estado actual	50.698,00	6.886,13	569,49	-	-	-	-
Estado futuro	41.991,00	6.128,00	3.689,82	8.707,00	10,12	758,13	4,87

Fuente: Elaboración propia.

Se estima que:

- El ahorro energético anual sería de 8.707 kWh al año
- Una reducción de emisiones de CO2 de 10,12 toneladas al año
- Un ahorro económico de 758,13 euros al año.

Y sería necesaria una inversión⁸³ de 3.689,82 euros amortizable en 4,87 años

⁸³ No se han tenido en cuenta la posible reducción del coste debida a las nuevas contratos en el mercado libre, las posibles subvenciones, gastos financieros, posibles reducciones el precio de materiales que pueda conseguir el Ayuntamiento, etc.

